A Pixel-wise Varifocal Camera Model for Efficient Forward Projection and
Linear Extrinsic Calibration of Underwater Cameras with Flat Housings

Abstract
This paper is aimed at presenting a new virtual camera c water
model which can efficiently model refraction through flat
housings in underwater photography. The key idea is to em-
ploy a pixel-wise virtual focal length concept to encode the
refractive projection inside the flat housing. The radially- () (b)
symmetric structure of the varifocal length around the nor- Figure 1. Overview of the setup. (a) Two cameras observing a
mal of the housing surface allows us to encode the refractivechesshoard in an octagonal water tank. (b) Calibration result by
projection with a compact representation. We show that this our method.
model realizes an efficient forward projection computation
and a linear extrinsic calibration in water. Evaluations us-

ing synthesized and real data demonstrate the performancdS 0 €mploy a pixel-wise virtual focal length which encodes
quantitatively and qualitatively. the refraction process inside the flat housing. By exploit-

ing a radially symmetric structure of the pixel-wise focal
lengths, we can describe them with a compact representa-
tion.
The contribution of this paper is twofold. Firstly, our
The successful development of image-based 3D sensingixel-wise varifocal camera model realizes a compact and
techniques in computer vision is based on the well-studiedefficient representation of the refractive projection via flat
perspective camera model and the multiple-view geometryhousings. Secondly our model realizes a linear extrinsic
in which light rays are supposed to be straight lines [9]. calibration of cameras in water. To the best of our knowl-
However, this modeling is not valid for environments edge, this is the first paper which proposes a linear extrinsic
with more than one media such as underwater photographycalibration of cameras with flat housings in water.
In particular, the forward projection via flat housings which The rest of this paper is organized as follows. Section 2
computes the projection of 3D points in water to the image reviews related studies. Section 3 defines our measurement
is known to be a time-consuming process involving highly model, and Section 4 introduces our pixel-wise varifocal
non-linear computations [1]. This fact makes applying con- camera model and a linear extrinsic calibration algorithm.
ventional vision techniques into underwater scenario diffi- Section 5 provides qualitative and quantitative evaluations
cult, since such inefficiency makes all the algorithms on top to demonstrate the advantage of our method. Section 6 con-
of 3D-to-2D projections impractical. cludes this paper with discussions on future work.
To solve this problem, this paper proposes a new virtual
camera _model which e_zncodes t_he refractive proje_:ction pro-o Related work
cess inside a flat housing by a simple representation, and re-
alizes an efficient forward (3D-to-2D) refractive projection While many studies have been proposed for underwater
computation and a linear extrinsic calibration. We believe vision [2—4,7,12,16], most of them do not explicitly model
it will open possibilities for applying computer vision tech- refractions by housings. This is mainly because such refrac-
niques into underwater scene, and its applications includetive distortions can be compensated by using dome-shaped
education and entertainment such as free-viewpoint 3D vi-housings carefully tailored for each of the cameras. How-
sualization of underwater scenes for digital aquariums, andever, flat surface housings are also popular because of the
3D analysis of underwater objects and events such as fertil-cost, and also because of the fact that regular cameras cap-
ized eggs and their development. turing objects in a water tank via its flat surface are equiva-
The key idea on modeling the refraction by flat housing lent to underwater cameras with flat surface housings.
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1. Introduction



Alr Hot‘fing Water sarily front-parallel to them. Instead, we employ the axial
camera concept proposed by Agrawahl. [1] to simplify
this model without loss of generality.

Consider a virtual camef@ such that its projection cen-
ter is placed aty and its optical axis is directed alonyg
the normal vector 08, andS; (Figure3). Also letC andC’
share a same intrinsic paramefercalibrated beforehand.
Then the relationship between 2D pixels of these two cam-
Air Housing Water eras is expressed by a homography matrix which projects
Ha Hg Hw . . P :

pixels fromC’ to C, and the projected point is on the line

connectingo and py by definition.

Since this homography is bijective, we can Gsastead
of C’ without loss of generality. In addition the light paths
g described using have a radially symmetric structure about
E the Z-axis by definition. Hence we utilize the,z) " coor-
dinate system hereafter.

Letry andz, be ther andz elements ofr. Also letvy =

In the context of refractions by flat surfaces [1, 6, 10], (va,ZvX)T denote the direction vector of ling towards
Agrawal et al. [1] have proposed a novel calibration tech- the water from the camera. Since Snell’s law is expressed
nique based on the axial camera model which estimates thegyg Hal'v, = Hglvy = Hulw, by using the refractive indicgs,,
exact model parameters of the refraction such as the thick-ug’ and i, of the air, housing and water, we can trace the
ness of the refractive surface and its refractive indices w.r.t. light path/s — ¢g — fy as
water and the aigtc. By knowing these parameters, Snell’s

Figure2. Measurement model

Figure3. Axial measurement model

law allows computing the light path passing through the re- T d;
— 2 2 2 2 -

fractive media. However, projecting a 3D point in water Va= (rpa/\/rpa+da’ fC/\/rpa+da)’ Pa= 7 "Va: @)
to the image involves highly non-linear computations, and T d
hence can be intractable if used for 3D sensing in water Vg = (“ar\,a, /1—r3 )’ Py = Pat ivg, )
in practice. We solve this problem by introducing a new Hg ’ Zyg
virtual camera model utilizing a pixel-wise varifocal length u T

- - i vy = [ =r 1-r2 3)
concept to improve computational efficiency. w TR Viy

Our pixel-wise varifocal length concept defines an inci-
dent ray direction for each pixel. Hence it can be seen aswheref; is the focal length of the camera.
a special case of theaxel concept [8] in general. In this These equations allow computifig, i.e. v,y andpg, from
sense, our contribution is to provide (1) a computationally p.. Similarly, computingp. from 4, can be done by apply-
efficient forward projection algorithm and (2) a linear ex- ing Snell's law inversely. Moreover, since orfly can be the
trinsic calibration on top of the raxel concept by specializ- line of the backprojection of,, the principle of reversibil-
ing it as the pixel-wise focal length. ity of light and the definition of the pinhole imaging ensure
Our extrinsic calibration also allows the flat housing sur- that only4,, can be imaged b€ among other rays incident
faces of the cameras to be located arbitrary in water, while at p,, on §; with different angles.
conventional multi-camera systems with flat refractive sur-  This suggests that knowing the correct direction of pro-
faces [5] assume the cameras to share a single flat surfacejection is crucial in computing the projection of a pougt
in water. Ifvy, is available, Snell’s law simply provides the
3. Measurement model analytical solution to findy, pa, and pe. Otherwise,i.e.,
_ . _ if vy IS not given, it requires solving a 12th degree equa-
F_|gurez |Ilustrate/s the measurement model of this paper. tion, and becomes a time-consuming process [1]. Our goal
A pinhole camereC’ at op observes the underwater scene g 1 hrovide a new virtual camera model which realizes an

via a flat housing surface (e.glass) ofdg thick atda dis-  gficient computation of the forward projection of the latter
tance fromap. A point py in water is projected tqy on e

the refraction boundarg; along the segmertty. py is pro-
jected top, on the refraction boundats, along the segment
g, and thenp, is imaged by the pixel gb along the rays
connectingp, and op. Suppose all the model parameters in the previous section
Notice that we assume the two surfa&sind$; of the including the homography betwe@andC have been cal-
housing are flat and parallel, but the camera is not necesibrated beforehand by conventional methods [1]. The goal

4. The pixel-wise varifocal camera model
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Figure4. Pixel-wise varifocal camera model. The dashed lines Figure5_ Forward projection by quadratica”y and g|0ba”y con-
illustrate the correct refractive paths while the straight lines illus- vergent optimization

trate the perspective projections. In order to represent the correct

incident angles of rays in water by a perspective manner, the pro-

jection centeop, moves orZ-axis per pixel fy) basis. computations (details are given later). Hence we can con-

) o ) ) siderC, as a virtual camera which models the refractions
of this section is to introduce a new virtual camera model jnside the housing without loss of generality.

which realizes a simple and efficient computation scheme
of the refractive forward and backward projections by com- 4.2. Backward projection using pixel-wise focal
piling the calibrated parameters of Figirmto another rep- length

resentation.

To this end, we emplopixel-wise virtual focal lengths
and introduce a virtual came@ such that the image screen
coincides withS; and the focal length changes per pixel ba-
sis as shown in Figuré. That is, we make the projection
center move byf (pg,) alongZ-axis according to the posi- by (0’_f(qg))T +tV, (9)
tion of each pixelp., so that the ray,, in water passing
through a pixelpy of C,, pa and pc (Figure 4, the green  using a parameter
dashed line) can be represented simply by connegjrig
guestion and the pixel-wise projection center (Figlirthe
green straight line).
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The backward projection using our varifocal camera
model can be done straightforwardly. If a poop on S
is the projection of a 3D poirt, in water, then the viewing
ray ¢y connectingig anday is given as

4.3. Forward projection using pixel-wise focal
length

) ) Consider a 3D pointyy in water, and a 3D linéy pass-
4.1. The pixel-wise focal length ing throughay and intersecting witts, and Z-axis atqg

Given a pixelpy = (rp,,da+dg) T of the virtual camera  and oy, = (0,—fq,) " as illustrated in Figuré. Then the
Cy, consider representing the rdy incident atpq as ifC,  following proposition holds.
is a pinhole camera and its projection center isZeaxis.
Obviously its projection centemy, = (0,— f(pg)) " is given
as the intersection of th&-axis and the liné,, as illustrated
in Figure4. Hence by solvingy, = tvy + pg Using Eq (3),

Proposition 4.1. f(qg), the pixel-wise focal length stored
at qq, is equal to §; if and only if/y is identical to the ray
imaged by the camera C.

we have Proof. The definition of the varifocal camera model en-
ta sures that the line passing through on § and op, =
( 0 ) o Al (rpg> @ (0,—f(py))" represents a 3D ray which is projected onto
—f(py) 1-r2, 0)’ a single pixel of the camei@ On the other hand, the prin-
L T g ciple of reversibility of light and the definition of the pin-
t= TR (5) hole imaging ensure that there exists only a ray incident at
“? Vo py which can be imaged by the camé&aHence it is only
f(py) = Hw Tpg 1— rng (6) the case making (qg) = fqy that{q is identical to the ray
Hg T imaged byC. O
— HuTr 1- (&rvg)z, (7) This proposition indicates that we can obtain the projec-
Ha Tvg Huw tion of gy on S, the image screen of the varifocal camera,
_ Hw'pg 1_ (&rv 2. ®) by seekinggg which minimizes the difference betwedg
Ha Ty, Hw andf(qg).

Onceobtainedf (pg) for each radial distance of the vir-
tual camerd,, we can computé,, for eachrg without trac-
ing the refraction inside the housing, and can compute theAs illustrated in Figure6, suppose the 3D poing, in
forward (3D-to-2D) and backward (2D-to-3D) projection question is first projected perspectively ¢p on §;, the

4.3.1 Forward projection by a recurrence relation
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Figure6. Forward projection by a recurrence relation

virtual screen ofC,, by using an initial (or tentative) fo-
cal length fy, (the green line). By the definition of the
pixel-wise varifocal model, the pixely stores its own focal
length fq, = f(qo) given at the calibration stage. That is,
0q, = (0,—fq,) " is the correct virtual projection center for
Qo instead ofog, = (0,—fg,) T. By iteratively applying per-
spective projections usin®, — fq,), (0,—fq, ), ..., we have

Faw F (k) / (Zg + T () - (10)

Vo1 =
By Snell’s law and the faatg, > rq, < f(ak) > f(qe),
the following monotonicity conditions hold:

Far > oo = Foer = Mg Fap <Fap = Fopps < Mg (11)
Also, the definition of the pixel-wise varifocal model en-
sures

Mo = o < F(Gin) = fgp, (12)
and, sinceua < g andpla < Ly,
da+dg < 7 fg,. (13)

SincePropositiond.1 ensures that there exists only one

rq. Which satisfies Eql1(2), starting the recurrence from

fq, = da+ dg always converges to the correct value satis-

fying Eq (12) as shown in Figuré.

as shown in Figure5. On the other hand, the back-
projection of the original corresponding pixel@gives

\/1—r2 \/1—r2

= Hwlvy (da/ HE — “WrVw + dg/ /Jg B “V%rgw) 7

(15)
as shown in Figuré. Since these twey, should be equal to
each other, we can formulate this as a problem findipg
which makes the following(ry,,) be zero.

E(rVW) = Eb(rVw) - Ef (rVw)'

The bestry,, which make<(ry,,) = 0 can be computed
by the Newton’s method efficiently, and moreover, it con-
verges globally regardless of the initial value.

=Ep(ry,) =

(16)

Proof. The theorem on Newton’s method for a convex func-
tion ensures that if a function is twice continuously differ-
entiable, increasing, convex and has a zero, then the zero is
unique, and the Newton’s method will converge to it from
any initial value [11].

In case of Eq16), the first and the second derivatives of
E(ry,) are given as

dE(r
dE ') =2qE1+zqerE1 + dghwE2
W tdgugrs B3+ dapnEs +dapigrd B3, (17)
2
d—E —3zqr\,WEf+32qr3 ED 4+ 3dgu3ry, E3
VW +3dg I‘lW VWEZ +3dauWrVwE3 +3dal"l Ega
(18)

whereE; = 1/( - r2 Y2, Er = 1/(Ug? — tw?r2 )¥2, and

Es = 1/(a® — ww?r, )Y/, Sincery, is non-negative by
definition, ESW > 0 holds andE(ry,,) is a convex func-
Ww

However, the rate of the convergence becomes slowertion. ObviouslyE(ry, ) is twice continuously differentiable,

and slower by iteration, because the linesdgyand og, ,,
(the green and the red lines of Figuiebecome nearly par-

increasing, and has a zero figf, > 0, then the Newton’s
method converges globally. O

allel. To solve this problem, we propose a method based on

the Newton’s algorithm which utilizes this recurrence rela-

tion.

4.3.2 Forward projection by a quadratically and glob-
ally convergent optimization

Using the 3D pointy, in question, we can descrilg, as

Iy
7""Zq7
1-rg,

I‘VW

lgg = Ef(rw,) =rq— *Zq =Tq— (14)

In addition, while this global convergence allows us to
start findingry,, from any value ir0, uw/ Lg], the recurrence
relation of Eq (10xan provide a reasonable initial guess of
r'v, Dy projecting first by a tentative virtual focal length with
a smaller computational cost as shown in Tahle

5. Linear Extrinsic Calibration Using 16 Points

Suppose we have two pixel-wise varifocal cametas
andC]. The goal of the extrinsic calibration is to estimate
the relative pos®,T of these cameras from a set of corre-
sponding points in their images. Since our virtual camera
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Figure?. Inputimages captured by the two cameras in Fig(a

projection error log;,Ep

Re

\ —o— Reccurence (6=15°)
—a— Reccurence (6=30°)
| —— Reccurence (A=70°)

—+— Newton (6=15°)

—A— Newton (6=30°)

is an axial model, its extrinsic calibration can be seen as a 4 Newton (6=70°)
special form of the one for axial cameras [13].  Number of iterations k

Given a pixelpy in the real image, we can obtain the Figure 8. Comparison of the rate of convergence. Notice that
corresponding positiopy on § without loss of generality  errors are lower bounded by 1%, the default precision of the
as illustrated by Figureg and4. Therefore, given a pair  floating-point computations in our implementation.
of corresponding points, we can represent the 3D point in
water as

Notice that this configuration is equivalent to having two
Ow = tq, Vv + Gg = Ag, Viv + Ogg. cameras with housings of 35mm thick in water. The model
= R(/\éw\/er Oﬁg) +T, (19) parameters of SectioB are calibrated by [1] beforehand,
and we used the same parameters to synthesize data for

!/ _ —
& AguViw — Ag, Ry = Rd(]g +T — Oy, quantitative evaluation

whereq, andAq, denote the unknown depths of the 3D 6.1. Forward projection
point from og, andog,.

This equation indicates thag,, R, and qug +T — 0,
are on a single plane. In other words, they satisfy:

vy, ((R% +T - oqg) X (R\/W)) =0. (20)

By rewriting this as an element-wise formula, we have

The following evaluations focus on showing the effi-
ciency of the model rather than comparing the accuracy
with state-of-the-arts since the proposed model does not im-
prove the accuracy by definition.

Rate of convergence To evaluate the rate of convergence
of our iterative methods for the forward projection in Sec-

|y Eull, =0, tion 4.3, Figure8 shows the projection errdf, against the
T number of iteration&. By using a synthesized data set, the
=0 Yo Zw fogXw  fog¥u) reprojection error is defined as
=% Yo fi% To¥e) 21 .
w ( A w O0g”Vw  Og Vw) (21) Ep= Hp/(rq)_|:>/(qu)||7 (22)

31yt —r21% I32Yt—r22% I33Yt—r23% —r12 11
M1 —T31% F12Z—r32% 134 —T33% —I22 21

Ey = [ ramx—rant ra2x—riapt rasx—rigt —rs2fa1 | wherery is the ground-truth and,, is the value returned by
e 2 BRI the algorithm at thé-th iteration inC,. P(rg,) denotes the

pixel position in the original image ¢’ corresponding to

whererjj is the (i, j) element ofR and T = (X, ¥,z) . rq in Cy. Notice thatP(-) is employed only for evaluating

(%> Yus Zwy) @Nd (X, Y4,5 4y,) FEPrEsenk, y, z elements  Ep in pixels, and is not required for the forward projection
of w, andV, expressed in their camera coordinate systemsto C,.
respectively. From these results, we can observe that (1) the rates
Sincel andl’ are given by each of corresponding pairs, of convergence of the recurrence relation and the Newton-
we can linearly estimate 17 unknown element&piip to based one are linear and quadratic respectively, and (2) our
a scale, by using 16 or more corresponding pairs. @jce Newton-based algorithm with 3 times iterations achieve a
is given,RandT can be obtained linearly frofa, conse- sub-pixel accuracy.
quently.
. Computational efficiency Tablel reports computational
6. Evaluation costs of our methods computing up to the subpixel accuracy
Figuresl and7 show the evaluation setup and a pair of and the state-of-the-art solving the 12th degree of equation

inputimages. We used two cameras (Pointgrey Chameleonfnalytically [1]. They are the average values of 6400 for-
in front of an octagonal water tank, and observe the sceng'Vard projections run in Matlab on an Intel Core-i5 2.5GHz

inside the tank via a flat acrylic surface tank of 35mm thick. ~ Ourimplementation is available online lattp://annonymous/
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Table 1. Average computational costs of single forward projections
\ Analytical[1] By Recurrence By Newton
Runtime 1.39msec 0.14 msec 0.27 msec
FLOPS 1512 113 250

We believe this method helps us to establish a robust and
practical 3D sensing of objects in water that depend on for-
ward (3D-to-2D) projections. Future work includes further
studies on the extrinsic calibration, in particular about its
degenerated cases, and also on the full 3D surface recovery

3 Erd0’ 3 by multiple cameras in water, etc.
038 4
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