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A Novel Catadioptric Ray-Pixel Camera Model
and its Application to 3D Reconstruction

Ryo Kawahara1,a) Shohei Nobuhara1,b)

Abstract: This paper proposes a new ray-pixel camera model for image-based 3D measurement by a catadioptric
imaging system. The key idea of this paper is to employ a virtual camera model that describes ray-pixel mappings with
exploiting an axially-symmetric structure of the ray distribution of the system. Our contributions include, structured
ray-pixel camera models which handle refractive and reflective projection rays efficiently, and practical calibration
algorithms for them. Evaluations with real images prove the concept of our measurement system.

1. Introduction
3D shape acquisition has been an important topic in computer

vision as an essential factor for interacting with real world, and
there are a large number of studies in particular for capturing hu-
man[1], [2], [3] and buildings[4], [5]. Applications of uncon-
strained and noninvasive image-based 3D shape capturing include
digital archiving, navigation in surgery, SLAM, industrial inspec-
tion, virtual reality, surveying and measurement, etc.

Most of the 3D shape capture studies in literature utilize regular
perspective cameras. Catadioptric system with additional lenses
and mirrors, however, can also be a practical solution for par-
ticular targets and scenes. For example, catadioptric system has
been widely studied for panoramic imaging[6], [7]. Besides, in
the case of underwater 3D capture, measurement through water-
proof housings or aquarium surfaces can also be considered as
catadioptiric system.

For such catadioptric measurements, the rays captured by the
system do not form a pencil due to reflections and refractions, and
the optical system as a whole cannot be modeled as perspective.
Therefore the 3D recovery via triangulation becomes a non-trivial
process as a result. The goal of this paper is to propose a cam-
era model that can handle such projections in catadioptric system
efficiently.

Our approach is to employ a ray-pixel (raxel) camera model
which focuses on the mapping from each pixel to the scene ray[8].
It implements 2D-3D projection just by storing the pixel-ray cor-
respondences without tracing the optical path between them, and
therefore it is flexible enough to model the light-field captured by
the catadioptric system.

The general ray-pixel representation, however, cannot provide
3D-2D projection in a straightforward manner. Given a 3D point
to be projected, it needs to find a ray stored in the model that in-
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tersects with the point. This can be an exhaustive search if the
rays are unstructured, while the 3D-2D projection is an essential
process in 3D recovery in handling occlusion and view depen-
dent color consistency analysis as done in space carving[9] for
example.

The key idea of this paper is to propose a structured ray-pixel
model which focuses on modeling the distribution of the rays in
catadioptric systems. For modeling a general distribution of the
rays, Grossberg and Nayar utilized a unique ray-surface called
caustics [8], to which all the incoming scene rays tangent. In
contract, to realize a compact description and an efficient 3D-2D
projection, we exploit an axially-symmetric structure of the rays
and employ a virtual camera model to describe such a 1D pixel-
to-ray mapping as a relationship between a virtual focal length
and a virtual pixel.

Based on our new camera model, we propose two practi-
cal catadioptric systems for 3D measurement, one for an un-
derwater active stereo with flat water-proof housings, and the
other for a microscale 3D reconstruction with teleidoscopic sys-
tem. In the first system, projectors are utilized as reverse cam-
eras[10], [11], [12] in order to improve the stereo matching for
poorly-textured underwater objects by attaching artificial textures
onto the target surface. We show our ray-pixel camera can cor-
rectly handle the underwater scene ray geometry and show that
our efficient 3D-2D projection realizes a practical 3D capture of
underwater objects such as swimming fish.

The second teleidoscopic system has three planar mirrors and
a monocentric lens similarly to teleidoscopes. The planar mirrors
virtually define multiple viewpoints, and the monocentric lens re-
alizes a high magnification with less blurry and surround view
even in closeup imaging. We show our camera model can handle
the refractive and reflective projection of the rays and show that
the system realizes a 3D shape capture of microscale objects.

2. Related Work
Catadioptric system have been utilzed for capturing objects in
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a wide range of scales and media, such as capturing objects in
water. Several studies have been proposed for handling scattering
or absorption[13], [14], [15], [16], [17], [18], [19], refraction at
water surface boundary[20], [21], [22] or refraction by housing
of underwater camera[23], [24], [25], [26], [27], [28], [29], [30].
3D shape capturing with refraction

As as well known, Snell’s law describes the refraction process
at the boundary of medium. Therefore, the process of observing
underwater scene by a perspective camera via refractive medium
such as waterproof housing can be expressed by tracing the light
paths by the law of refraction[24], [25], [26]. This is an analytical
process, however, its 3D-2D projection is defined as a solution of
a 12th-degree polynomial[24] and is time-consuming for dense
3D geometry recovery.

On the other hand, the ray-pixel approach proposed by Gross-
berg and Nayar describes such projection process as a map-
ping between them regardless of the intermediate projection pro-
cess[8]. While this pixel-wise representation has a great flexibil-
ity to describe complicated projections[31], [32], [33], [34], 3D-
2D projection cannot be provided explicitly. That is, it requires
finding a ray in the mapping function that intersects with the 3D
point in question.

Therefore, in both analytical and general ray-pixel approaches,
3D-2D projections involve a time-consuming numerical opti-
mization process. Instead of directly using 3D-2D projection,
Sedlazeck and Koch propose a virtual camera whose projec-
tion centers are on a ray-surface called caustic, and they pro-
vide 2D-3D based reprojection error modeling for handing re-
fraction[27], [35].
3D shape capturing with mirrors

While catadioptric system has a wide variety of applications
such as omnidirectional observation and panoramic stereo[6], [7],
[36], [37], the following reviews studies with multiple flat mir-
rors.

A fundamental motivation of introducing mirrors in obser-
vation system is to increase the number of viewpoints without
installing additional cameras for multi-view capture of a tar-
get[38], [39], [40], [41], [42], [43]. Takahashi et al. [40] have
proposed a kaleidoscopic imaging system and demonstrated a 3D
shape reconstruction using multiple reflections. Tagawa et al.
[42] have proposed a multi-facet imaging system for that observes
a target from an equally distributed virtual cameras reflectance
analysis.

These studies can be categorized into two groups: virtual cam-
era approaches or virtual object approaches. The former utilizes
the mirrors to define virtual cameras capturing the original object
from different directions. The latter considers that the mirrors de-
fine virtual objects in the original camera image. While the latter
allows modeling the entire light field by a single ray-pixel camera,
we follow the former approach to exploit an axially-symmetric
structure found in the rays of each virtual view.
3D shape capturing with monocentric lens

In the context of imaging system, the monocentric lens is often
used to obtain a wide field-of-view[44], in particular for endo-
scopes, as a short focal length lens. The monocentric lens, how-
ever, has additional useful characteristics: its symmetric structure

-50 0 50 100 150

-100

-50

0

50

100

-50 0 50 100 150

-100

-50

0

50

100

(a) (b)

air waterhousing air waterhousing

Fig. 1 Refraction caused by flat housing. Green lines illustrates the actual
projection path. (a) Blue dashed lines denote the straightly extended
rays in water and form a caustic structure. (b) Red dashed lines de-
note the rays which are straightly back-projected ignoring the refrac-
tion and obviously lead to a wrong measurement.
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Fig. 2 Measurement model through planar refraction. A point pw in water is
projected to pp and o0 along the segments ℓw-ℓg-ℓa. c⃝2016, Elsevier
[28].

and magnifying power.
By exploiting the symmetric structure of the monocentric lens,

Cossairt et al. [45] have proposed a camera array which captures
a same scene through a single monocentric lens so that the im-
ages can be stitched into a single high-resolution image. Sim-
ilarly, Dansereau et al. [46] have proposed a lightfield camera
which captures omnidirectional lightfield images through a sin-
gle monocentric lens with a camera orbiting around it.

A typical use of the monocentric lens as a magnifier can be
found in the Leeuwenhoek’s microscope in the 17th century. It
utilizes a single monocentric lens and realized over 100× magni-
fication[47].

3. 3D Reconstruction through Planar Refrac-
tion

Projection paths to a perspective camera via a flat housing is
shown in Fig. 1-(a). Unlike the case in the air, the ray in water
is not described as straight line from a common projection center
because of the refraction. This fact indicates that conventional
triangulation methods in the air cannot return the correct location
and that refraction effects cannot simply be modeled by radial
distortions.

The key idea of our approach on modeling such ray distribution
is to exploit the axially-symmetric structure of the ray distribution
by the flat housing.

3.1 Measurement through Planar Refraction
Measurement model through planar refraction is shown in

Fig. 2. A pinhole camera C at o0 observes the underwater scene
via flat housing. A point pw in water is projected to pp and o0

along the segments ℓw-ℓg-ℓa.
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Fig. 3 Axial measurement model. The segments ℓw-ℓg-ℓa and housing nor-
mal n have axially symmetric structure around the normal n. c⃝2016,
Elsevier [28].
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Fig. 4 Light path in axial measurement model. Left: the light path ℓa is
derived from the observed point pp. Right: the segments ℓa − ℓg − ℓw
is derived from ℓa by Snell’s law. c⃝2016, Elsevier [28].

Assuming that the two surfaces S a and S g of the housing are
flat and parallel, the segments ℓw-ℓg-ℓa and housing normal n are
always on a single plane-of-refraction and have axially symmet-
ric structure around the normal n. Hence, we employ the axial
camera concept proposed by Agrawal et al. [24] to simplify this
model without loss of generality.

Consider a virtual camera Cn such that its projection center is
placed at o0 and its direction of optical axis is identical to the nor-
mal n of the flat housing (Fig. 3). If the pose of camera C w.r.t.
the housing is calibrated beforehand, the mapping from a pixel of
virtual camera Cn to the corresponding pixel of C is given by a
homography matrix HC derived from the intrinsic and the pose of
C, where we simply assume the cameras C and Cn share the same
intrinsic parameter A and assume the radial distortion caused by
the internal lens of the camera is already rectified.

Therefore, instead of C, we can use Cn which has a radially
symmetric structure of refractive path around the Z-axis without
loss of generality. In the coordinate of Cn, any continuous seg-
ments ℓw-ℓg-ℓa are observed as a single line on the image plane,
because the segments are on a single plane-of-refraction. Hence
we employ the (r, z)⊤ coordinate system hereafter.

Let rα and zα denote the r and z elements of vector α in gen-
eral. For example, point pp is described as pp = (rpp

, zpp
)⊤. Also

let uX = (ruX , zuX )⊤ denote the direction vector of line ℓX towards
the water from the camera, where X is each medium (Fig. 3).

The light path ℓa-ℓg-ℓw follows Snell’s law which is expressed
as µarua = µgrug = µwruw , where µa, µg, and µw are the refractive
indices of the air, housing and water. Using Snell’s law, the light
path ℓa-ℓg-ℓw is given as

pw
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Fig. 5 Planar refraction ray-pixel camera model. The dashed lines illus-
trate the correct refractive paths in three random samples (red, green,
blue). The straight lines illustrate the perspective projections by the
virtual focal length fv and virtual pixel pg c⃝2016, Elsevier [28].
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where fc is the focal length of the camera. These equations allow
computing direction of a ray in water uw and a position pg, given
a pixel pp on the image plane. Similarly, computing pp from uw
can be done by applying Snell’s law inversely because ua can be
derived from uw by Eqs. (3) and (5).

This indicates that the inverse process of Eq. (1)-Eq. (6) re-
quires the direction uw, but in the case of 3D-2D projection, only
given is 3D point pw. It requires solving a 12th degree equation
and becomes a time-consuming process[24]. To realize a practi-
cal projection through planar refraction, we employ a new camera
model that exploits the radial structure of the rays in Cn, based on
the ray-pixel camera model[8] and Eqs. (1)-(5).

3.2 Planar Refraction Ray-Pixel Camera Model
Let us consider the representation of scene rays ℓw. On the

assumption of the straightness of light, a scene ray ℓw is simply
described by a set of a starting point and a direction. That is, when
we set an arbitrary starting point opw along the ℓw, the geometric
representation of the ray ℓw is defined by the set (opw , uw), where
the point opw is generally R3 and the direction uw is R2 by two
angles similarly to the geometric part of the light field of plenop-
tic camera by Adelson and Bergen[48]. In addition, the starting
point opw can be on a surface such as a unique caustic formed by
the rays ℓw[35] or a 2D plane in front of the camera.

Fig. 5 shows our a new virtual camera model called planar re-
fraction ray-pixel camera model.Notice that each extended rays
of ℓw intersects a common axis whose direction is identical to the
housing normal n. This fact indicates that we can compactly rep-
resent the ray ℓw by the position of the intersection point on the
axis.

In particular, we introduce a virtual camera whose image plane
is on the outer housing surface S g associated with a pixel-wise
virtual focal length fv(pg) ∈ R as follows.
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Table 1 A pixel-ray mapping for generalized ray-pixel model. A pixel pp

is associated with a point on ray-surface opw ∈ R3 and the direction
uw ∈ R2

pixel pp0 pp1 · · · ppN
ray (opw0, uw0) (opw1, uw1) · · · (opwN , uwN )

Table 2 A pixel-ray mapping of our planar refraction ray-pixel camera
model. A pixel rpg in (r, z)⊤ coordinate in Cv is associated with
a pixel-wise focal length f (rpg ) ∈ R. The 1D ordered structure

easily provide the differential d f
drpg

for the mapping.

pixel rpg0 rpg1 · · · rpgN
ray f (rpg0 ) f (rpg1 ) · · · f (rpgN )
d f

drpg
f ′(rpg0 ) f ′(rpg1 ) · · · f ′(rpgN )

• The virtual image screen coincides with the housing surface
S g. The virtual pixel pg is associated with a real pixel pp of
C by Eq. (4) and the homography HC between C and Cn.

• The virtual optical axis (Z-axis) is identical to the housing
normal n.

• The pixel-wise projection center opg is defined simply by
connecting ℓw to the virtual optical axis (Fig. 5, the green
straight line). The distance between opg and S g is denoted as
the pixel-wise focal length fv(pg).

From the radially symmetric structure of the ray distribution,
the pixel-wise focal length fv(pg) can be expressed as a function
of the radial distance rpg of pg from the optical axis without loss
of generality:

fv(pg) = fv(rpg ). (7)

In addition, it is obvious that fv(rpg ) is a monotonically increasing
function of rpg from Fig. 5.

By the definition, the pixel-wise virtual focal length fv(rpg ) is
derived as follows,

opg = touw + pg, (8) 0
− fv(rpg )

 = to

ruwzuw

 + rpg
0

 ,
⇔ fv(rpg ) =

(
ruw
zuw

)−1

rpg . (9)

These representation leads to the compact description of the
rays ℓw as a ray-pixel camera model.
3.2.1 The Ray-Pixel Mapping

As shown in Table 1, the generalized ray-pixel camera model
such as [8] associates fully-described scene rays in R5 by the
mapping of ray-surface such as caustic. Compared to such gen-
eralized ray-pixel camera model, our planar refraction ray-pixel
camera model stores focal lengths for each radial distance in a 1D
array as shown in Table 2.

In addition, our mapping also has the derivative d f
drpg

(the last
row of Table 2), since f (rpg ) is a smooth and monotonic func-
tion. This d f

drpg
is the key to realize our efficient 3D-2D projection

(Section 3.2.3).
In practice the mapping table can be obtained as follows.
• Sample the radial distance rpg of virtual pixels at equal in-

tervals so that the interval is smaller than 1px in the image
plane of corresponding real camera C.

• Compute the pixel-wise virtual focal length fv given by rpg
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Fig. 6 3D-2D projection of planar refraction ray-pixel camera model. The
black line ℓw is the correct projection path of the model. The search
line ℓλ iteratively converges to the correct line ℓw by using rpg - fv cor-
respondences. c⃝2016, Elsevier [28].

and uw in Eq. (9), where uw is obtained by using Snell’s law
(Eq. (4)).

3.2.2 2D-3D Projection
For a pixel pg on virtual image plane S g, 2D-3D projection

is trivially defined like a perspective projection from virtual fo-
cus opg which corresponds to rpg by the Table 2. That is, the
2D-3D projection is represented by using virtual focus opg =

(0,− fv(rpg ))
⊤ as

ℓw : opg + twuw = opg + tw
pg − opg

||pg − opg ||
, (10)

where tw is the pg-pw distance.
3.2.3 3D-2D projection

The 3D-2D projection process can be realized by the searching
the mapping table for the ray intersecting with the point pw to be
projected. As shown in Fig. 6, let us hypothesize a ray ℓλ from
pw which intersects with the axis at Λv(0,−λv). If the ray ℓλ is
identical to ℓw stored in the mapping table, we can conclude that
the hypothesized ray was the correct projection direction from
pw. Otherwise, we can refine the hypothesis in the following two
approaches.
By Gauss-Newton method

Utilizing the ray-pixel mapping and the derivative of fv shown
in Table2, we can solve the 3D-2D projection by Gauss-Newton
method. When the ray ℓλ is identical to ℓw, following equation is
satisfied,

G(rpg ) = fv(rpg ) − λv(rpg ), (11)

where, G(rpg ) is a monotonic function and hence we can compute
rpg by iterative process as

r(k+1)
pg = r(k)

pg −G(r(k)
pg )
∆rpg

∆G
= r(k)

pg −
fv(r

(k)
pg ) − λv(r(k)

pg )

f ′v (r
(k)
pg ) − λ′v(r

(k)
pg )
, (12)

where r(X) denotes the r element with the notation identifier X,
in this case, r(X) denotes r element of the X-th iteration. The
derivative f ′v is obtained by Table 2 computed beforehand. λv of
Λv(0,−λv) and its derivative are functions of r(k)

pg :

λv =
r(k)

pg zpw

rpw − r(k)
pg

, λ′v =
r(k)

pg zpw

(rpw − r(k)
pg )2
+

zpw

rpw − r(k)
pg

. (13)

The global convergence of this process is ensured from the
characteristics of G(rpg ). From Eq. (9), Eq. (11), and Eq. (13),
the form of G(rpg ) becomes the same as Eq. (6) and known as
a twice continuously differentiable, increasing, and convex func-
tion having a zero[28].
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v (red line). As a
result, the recurrence relation gradually converges to the correct pro-
jection point using calibrated relationships pg 7→ fv for each virtual
pixel pg.

By Recurrence Relation
As shown in Fig. 6, we can also obtain the corresponding ray

without using the differential f ′v as follows:

r(k)
pg =

rpwλ
(k)
v

zpw + λ
(k)
v

, λ(k+1)
v = fv(r

(k)
pg ) (14)

⇔ r(k+1)
pg =

rpw fv(r
(k)
pg )

zpw + fv(r
(k)
pg )
. (15)

The method guarantees global convergence because of the fol-
lowing reasons. From Eq. (9), fv is a monotonic function of rpg
satisfying

r(k+1)
pg > r(k)

pg ⇔ f (k+1)
v > f (k)

v . (16)

Therefore, from Eq. (15),

r(0)
pg < r(1)

pg ⇒ r(k+1)
pg < rpw

fv(r
(k+1)
pg )

zpw + fv(r
(k+1)
pg )

< rpg . (17)

That is, the following monotonicity is satisfied:

r(1)
pg > r(0)

pg ⇒ r(k+1)
pg ≥ r(k)

pg , r(1)
pg < r(0)

pg ⇒ r(k+1)
pg ≤ r(k)

pg . (18)

As a result, the iteration converges to

r(k+1)
pg = r(k)

pg ⇔ f (k+1)
v = f (k)

v . (19)

Notice that a reasonable initial guess for λ(0)
v can be given by

projecting the point in water to the projection center o0 of the real
camera C without considering the refraction.
3.2.4 Efficiency of 3D-2D Projection of a Planar Refractive

Ray-Pixel Camera
This section evaluates our 3D-2D projection computation in

terms of efficiency. Notice that the proposed model does not
improve the projection accuracy in comparison with the conven-
tional analytical approach by definition.
Rate of Convergence

To evaluate the rate of convergence of our iterative methods
for the 3D-2D projection in Section 3.2.3, Fig. 8 shows the pro-
jection error Ep against the number of iterations k. By using a
synthesized data set, the reprojection error is defined as

Ep = |P′(r̂pg ) − P′(r(k)
pg )|, (20)

where r̂pg is the ground-truth and r(k)
pg is the value returned by the
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Fig. 8 Comparison of the rate of convergence. log10Ep = 0 (led dashed
line) corresponds to the 1 pixel accuracy. Notice that errors are lower
bounded by 10−12, the default precision of the floating-point compu-
tations in our implementation. c⃝2016, Elsevier [28].

Table 3 Average computational costs of single 3D-2D projections.

Analytical[24] By Recurrence By Newton
Runtime 1.39 msec 0.14 msec 0.27 msec

algorithm at the k-th iteration in Cv. P′(r(k)
pg ) denotes the pixel

position in the original image of C′ corresponding to r(k)
pg in Cv.

Notice that P′(·) is employed only for evaluating Ep in pixels,
and is not required for the 3D-2D projection to Cv.

From these results, we can observe that (1) the rates of con-
vergence of the recurrence relation and the Newton-based ones
are linear and quadratic respectively, and (2) our Newton-based
algorithm with iteration k = 3 achieve a sub-pixel accuracy.
Computational Efficiency

Table 3 reports computational costs of our methods comput-
ing up to the subpixel accuracy and those of the state-of-the-art
solving a 12th degree of equation analytically[24]. They are the
average values of 6400 3D-2D projections run in Matlab on an
Intel Core-i5 2.5GHz PC.

From these results, we can conclude that our method runs much
faster than the analytical method while achieving the sub-pixel
accuracy. In other words, our method achieves a comparable ac-
curacy as other methods in practical image-based analysis.

The linear and quadratic rates of convergence shown in Fig. 8
do not immediately indicate that the Newton-based method is al-
ways better. That is because their computation costs for one iter-
ation step is different as shown in Table 3. One practical option
is that combining these two methods by updating with the recur-
rence relation method first and then by switching to the Newton-
based one for fine tuning, because the computation cost of re-
currence relation method is smaller but linear convergence re-
quires many iteration steps in larger angle of refraction as shown
in Fig. 8.

3.3 Underwater 3D Reconstruction
This section introduces our underwater active stereo system in

which both cameras and projectors are modeled by our planar re-
fraction ray-pixel camera model.

The main difficulty in underwater stereo is its depth-dependent
distortion on the image plane caused by refraction. This distortion
deforms the epipolar line and invalidates stereo methods which
provide dense 3D shape by template matching.

We show that our model can realize an efficient implementa-
tion of underwater active stereo utilizing the 3D-2D projection
introduced in the last section.
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3.3.1 Calibration
Single Camera Calibration in Water

Single underwater camera is calibrated based on a conventional
method using a reference object of known geometry (such as a
chessboard) in water[24], [49]. Once the parameters describing
the refraction process are obtained, we can build the ray-pixel
mapping table as shown in Table 2.
Linear Extrinsic Calibration of Underwater Cameras

Relative posture of planar refraction ray-pixel cameras can
be estimatd from corresponding pairs of projections of scene
points.Suppose each of the cameras are calibrated as a planar
refraction ray-pixel camera beforehand. Given a pair of corre-
sponding points in two such cameras, we can back-project the
rays in water as shown in Fig. 9. Since these two lines intersect,
the following coplanarity constraint holds.

uw
⊤
((

Ro′pg + t − opg

)
× (

Ru′w
))
= 0. (21)

By rewriting this in a bilinear form, we have

xuw
yuw
zuw
− fvyuw
fvxuw

0


[t]×R R

R 0




x′uw
y′uw
z′uw
− f ′v y

′
uw

fvx′uw
0


= 0, (22)

where [X]× denotes the 3×3 skew-symmetric matrix defined by a
3D vector X. Now we can rewrite the equation in a Plücker forms
as

ℓwEvℓ′w = 0. (23)

Since ℓw and ℓ′w are given by each of the corresponding pairs,
we can linearly estimate 17 unknown (9 for [t×]R, 8 for R except
for R3,3) elements of Ev up to a scale using 16 or more corre-
sponding pairs for Eq. (23).

Notice that Eq. (23) has a trivial solution Ro′pg + t − opg = 0.
This indicate that two virtual optical centers coinside. As men-
tioned in [50],

Ev =
0 I
I 0

 . (24)

exists iff fv = f ′v and these virtual focal lengths are changed for
each pixel.
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Fig. 10 Underwater projector-camera calibration. A projector C and a cam-
era C′ observe a point pV on a plane Π in water via flat housings.
The camera C′ also observes a printed point pΠ to get a pose of the
plane Π. The underwater projector calibration is conducted by the
⟨p(V)

p , pV ⟩ pairs. c⃝2016, Elsevier [28].

Calibration of Projector-Camera System in Water
This section describes our underwater projector-camera cali-

bration as originally presented in [51]. Same as the case of single
underwater camera calibration, what required for the parameters
of underwater projector is the corresponding pairs of a 3D scene
point and its projection ⟨pp, pw⟩. However, since the position
of 3D point pw projected by the underwater projector cannot be
obtained directly, we estimate pw by an underwater camera cali-
brated beforehand.

As illustrated in Fig. 10, there are underwater projector C, un-
derwater camera C′, and reference plane Π in water. Let us as-
sume underwater camera C′ is calibrated as Cv′ beforehand.

Suppose reference points of known geometry are printed on the
plane Π as pΠ = (xpΠ , ypΠ , 0)⊤, for the pose estimation of camera
Cv′ w.r.t. Π by capturing pattern pΠ. On the other hand, unknown
points are projected on the plane Π as pV = (xpV

, ypV
, 0)⊤ by the

projector C. Our goal is to estimate pV and calibrate underwater
projector as Cv.

To sum up, our calibration consists of the following steps.
Step 1. Camera Cv′ pose estimation w.r.t. Π by capturing pat-

tern pΠ.
Step 2. Estimation of 3D geometry of a pattern pV projected by

C on Π using Cv′.
Step 3. Projector calibration of Cv and its pose estimation w.r.t.
Π using 2D-3D correspondence of pattern pV .

Step 1. Pose Estimation of Camera using Planner Pattern in
Water

The camera pose RΠ′ and tΠ′ w.r.t. Π can be estimated using
the flat refraction constraint[24]. That is, the direction u(Π)

w
′ of

the ray ℓw′ as a backprojection is identical to the vector from
the incident point p(Π)

g
′ to p(Π)

w
′, where the known point pΠ =

(xpΠ , ypΠ , 0)⊤ is described as p(Π)
w
′ in the coordinate system of

camera Cv′ (Fig. 10).

u(Π)
w
′ ×

(
(RΠ′ pΠ

′ + tΠ′) − p(Π)
g
′
)
= 0 (25)

⇔


xp(Π)

′[u(Π)
w
′]×

yp(Π)
′[u(Π)
w
′]×

[u(Π)
w
′]×


⊤ 

rΠ,1′

rΠ,2′

tΠ′

 = [u(Π)
w
′]× p(Π)

g
′,
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where rX,i denotes the ith column vector of RX with notation iden-
tifier X. Since this equation provides three constraints for 9 un-
knowns rc,1

′, rc,2
′, and tc

′, we can solve this system of equations
linearly by using at least three points. Once rc,1

′ and rc,2
′ are

obtained, rc,3
′ is given by their cross product.

Step 2. Estimation of 3D Geometry of Projected Pattern
The goal here is to estimate pV = (xpV

, ypV
, 0)⊤ from its pro-

jection p(V)
p
′ in the camera Cv′ image in order to establish 2D-3D

correspondences between 2D projector pixels p(V)
p and 3D points

pV on Π.
Since pV is on ℓw′, we can represent its 3D position to Cv′ by

2D-3D projection (mentioned in the section3.2.2) with a scale pa-
rameter tw′ as

pV = R⊤Π(p(V)
w
′ − tΠ′) (26)

= R⊤Π(tw′u(V)
w
′ + o(V)

pg
′ − tΠ′).

Since we know z of pV is equal to 0, it is trivial to determine the
unknowns xpV

, ypV
, and tw′

Step 3. Calibration of Projector using 2D-3D Correspon-
dences

Given a set of correspondences between 2D projector pixels
and its projection on the plane Π (p(V)

p , pV ) in the previous step,
the pose of the real projector RΠ and tΠ w.r.t. Π, and its hous-
ing parameters can be calibrated by the conventional method[24].
Once obtained these parameters, we can build a table representing
the virtual focal length as done for underwater camera.

Notice that the 3D points pV are not necessarily from a single
Π. In fact, by capturing the panel Π with different poses in water,
they can cover a larger area of the scene and contribute to im-
prove the accuracy and robustness of the parameter estimation as
pointed out in [24].
3.3.2 Triangulation by Planar Refraction Ray-Pixel Cam-

eras
Towards the 3D reconstruction, we introduce the triangulation

method by multiple planar refraction ray-pixel camerass. The ba-
sic idea is to form triangle as with the case of linear extrinsic
calibration of underwater cameras in Section 3.3.1.

Instead of using the plane-of-refraction constraint, the trian-
gulation process utilizes the two way of a light path description.
That is, in Fig. 9, outgoing ray direction uw = (rvw , zvw )

⊤ of ℓw is
also described as opg (0,− fv)-pw(rpw , zpw ) direction.

Therefore, the following relationship (flat refraction constraint)
holds.

uw × (pw − opg ) = 0

⇔ rpw −
rvw
zvw

zpw = −
rvw
zvw

fv.

For multiple viewpoints, we rewrite this in (x, y, z) expression as

1 0 − xvw
zvw

0 1 − yvwzvw



xpw

ypw

zpw

 = − fq
zvw

xvw
yvw

 ,
⇔ A0 pw = b0,

(27)

and for C′v1,

(a) (b)
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Projector

Camera4Camera3

Camera1 Camera2
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Fig. 11 Evaluation environment of underwater projector-camera system.
(a) Two cameras and one projector observing the underwater target
(colored chess pattern) via a flat housing, and two cameras captur-
ing the reference object (black chess pattern) in the air to provide
the ground truth position of the colored chess pattern. (b) Calibra-
tion result of evaluation system. Camera1 and Camera2 define our
underwater camera system. Camera1 and Pro jector define our un-
derwater projector-camera system. c⃝2016, Elsevier [28].
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Caemra4
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Camera3

Camera4

Projector
Camera1

Camera3

Projector

Camera4Panels Panels

Fig. 12 Evaluation Result. (a) 3D points estimated by the underwater
camera pair. The blue points are ground truth. Our estimation
with refraction modeling (cyan points) correctly provide the posi-
tion comparing with the estimation without refraction computation
(red points). (b) 3D points estimated by the underwater projector-
camera pair. The panel planes with the yellow points are calibrated
by the reference cameras in the air as the ground truth. The blue
points are estimated by our underwater projector-camera system.
The red points are estimated by assuming perspective projection
without refraction. (c) Top view of (b). c⃝2016, Elsevier [28].

A1(R1 pw + t1) = b1,

⇔ (A1R1)pw = b1 − A1 t1.
(28)

By combining these two, we obtain pw by solving A0

A1R1

 pw =
 b1

b1 − A1 t1

 . (29)

In the case of three or more viewpoints, we can simply stack the
same constraints in Eq. (29) for each viewpoint.
3.3.3 Quantitative Evaluation using Reference Cameras

As shown in Fig. 11, we used four SXGA cameras (Pointgrey
CMLN-13S2C-CS) and one 1080p projector (BenQ MH680)
around an octagonal water tank (900 mm diameter, 30mm thick-
ness). The capture target is a flat panel having two chess patterns
of known geometry on it: a colored pattern in water and a black
pattern in the air. Notice that this is optically-equivalent to having
an underwater projector and cameras with waterproof flat hous-
ings.

Camera1 and Camera2 and the projector observe the patterns
of target in water. Camera3 and Camera4 are used as reference
cameras calibrated beforehand by capturing the reference patterns
in the air[52] for evaluation purpose. These two reference cam-
eras can provide the ground truth of patterns’ 3D geometry in
water indirectly by capturing the both chess patterns in the air.
Evaluation of Underwater Cameras

Fig. 12-(a) shows the estimated 3D geometry of 40 chess cor-
ners in water on five panels at different distances, where these

c⃝ 2013 Information Processing Society of Japan 7
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GoldfishCamera 1

Camera 2

Camera 3

Camera 4

Camera 5

Projector 2Projector 1

Fig. 13 Setup for dynamic 3D shape capture of goldfish. The cameras, the
projectors, and the tank are the same ones used in Fig. 11. c⃝2016,
Elsevier [28].

corners are different from the corners used for calibration step
and the distance between the nearest and the farthest panels was
roughly 400 mm.

The blue points are the ground truth calculated by the reference
cameras in the air (Camera3, Camera4). The cyan ones are the
points by our underwater camera system (Camera1, Camera2),
and the average error of these 200 points was 2.43 mm. The red
ones are points calculated by assuming the perspective projection
without refraction, and its average error was 31.11 mm. The re-
sult shows our calibration of underwater cameras obviously pro-
vides a better result of 3D measurement quantitatively and quali-
tatively.
Evaluation of Underwater Projector and Camera

Figs. 12(b) and (c) show the estimated chess corner positions
on three panels at every 200 mm using the Structured Light-
ing[53], [54] conventional Gray code pattern. The yellow points
and the plane are the ground truth calculated by the reference
cameras in the air (Camera3, Camera4). The blue dots denote the
points by our underwater projector and camera system (Camera1,
Pro jector). The red dots denote the points by assuming the per-
spective projection without refraction. These figures qualitatively
visualize that our method better reconstructs the 3D points of dif-
ferent distances from the camera and the projector.

The quality of the calibration is assessed by measuring the dis-
tance from the ground truth plane to the estimated 3D points. The
average errors of the blue points on the three panels were, from
near to far, 1.90 mm, 1.59 mm, and 4.01 mm respectively. Those
of the red ones were 34.36 mm, 9.53 mm, and 89.06 mm respec-
tively.

From these results we can conclude that our method realized a
practical underwater projector-camera calibration in a reasonable
accuracy for a wide range of distance from the cameras.
3.3.4 Dynamic 3D Capture of Swimming Fish

As shown in Fig. 13, we used five underwater cameras and two
underwater projectors, and captured a swimming goldfish. Each
of the projector casts a pattern in different color channels (red
and blue) for avoiding interference. The system ran at 15 fps in
recording, and took about 30 sec per frame to reconstruct the 3D
shape by our underwater space carving using 4 mm voxel resolu-
tion.

The three columns in the left of Fig. 14 show the captured im-
ages, and the three columns in the right show rendered images of
the reconstructed 3D shapes by our method and by the conven-

Cam 1 Cam 3 Top

#1

#10

#20

#30

#40

#50

#60

#70

#80

Cam 5 Side(ours) Side(no refraction)

Captured Images Rendered Images

Fig. 14 Result of 3D shape estimation of goldfish. Each row shows images
of the same frame indicated in the left most column. We can virtu-
ally observe the object appearance even from the viewpoint where
the real camera does not exist (left column of Rendered Images),
and the conventional space carving cannot produce a comparable
result since it ignores refraction (right most column). c⃝2016, Else-
vier [28].

tional space carving with perspective projection[9]. As the left
column of the rendered images shows, we can virtually observe
the object appearance even from the top-side of the object where
the real camera does not exist. This well demonstrates the ac-
curacy of our 3D shape estimation quality. On the other hand,
the conventional space carving cannot produce a comparable re-
sult since it ignores refraction and results in poor 3D estimations
due to wrong photo-consistency evaluation. These points prove
the concept of our image-based full 3D shape reconstruction of
underwater dynamic objects.

4. Catadioptric Ray-Pixel Camera Model
In this section, we introduce the idea and description of our

new ray-pixel camera model for catadioptric system with a front
lens and planar mirrors.

4.1 Monocentric Lens
Monocentric lens is a spherical and homogeneous optical lens

which often has a high refraction index. As shown in Fig. 15, rays
from a single point (blue) towards a monocentric lens diverge at
a wide angle on the other side.

This indicates that a perspective camera located at the point can
use the monocentric lens as a conversion lens to obtain a wider
field-of-view. It approximately has a short focal length as a thick
lens, however, it does not have a single focus strictly[45], as il-
lustrated as the caustic by the red lines in Fig. 15. In order to
model such rays efficiently, we first model the ray-pixel mapping
through the monocentric lens.

c⃝ 2013 Information Processing Society of Japan
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Fig. 15 Refraction by monocentric lens. The blue, green, and red lines in-
dicate incident, refracted, and emergent rays through a monocentric
lens respectively. Notice that the emergent rays have a wider field-
of-view than that of the incident rays, while they form a caustic.
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Fig. 16 Measurement through monocentric lens. The segments of projec-
tion path ℓo-ℓg-ℓi have an axially symmetric structure around the
axis which directs to the monocentric lens center oD.

4.1.1 Measurement through a Monocentric Lens
Suppose a perspective camera whose camera center is located

at o0 observes the scene through a monocentric lens located at oD

as illustrated in Fig. 15. Here the perspective camera can be as-
sumed to be directed to the the center of the monocentric lens oD

without loss of generality, since we can calibrate the rotation to
align the optical axis of the camera to the line oD−o0 as described
later. We denote this normalized camera by Cn.

Obviously, the rays back-projected through pixels of Cn have
an axially symmetric structure around the optical axis, and an in-
cident ray ℓi through a pixel pp and its refraction ℓg and emergent
ray ℓo are on a single plane-of-refraction[55]. Therefore, we can
describe the ray through a single pixel by a 2D (r, z)⊤ coordinate
system centered at o0 as shown in Fig. 15.

Consider the projection path ℓo-ℓg-ℓi from o0 through the point
pp in Fig. 15. The incident point pi on the sphere is described as
a function of θp = tan−1(rpp

/ fc) as

zpi =
dD −

√
d2

D − (1 + tan2θp)(d2
D − r2

D)

1 + tan2θp
,

rpi = zpitanθp.

(30)

The refraction angle θg is then given by Snell’s law with as-
suming the refractive indices of the air µa and the lens µg are
known:

µgsinθg = µasin(θp + θDi),

⇔ sinθg =
µa

µg

dDrpi

rD

√
r2

pi + z2
pi

. (31)

The outgoing point po is derived as the intersection of the path
ℓg and sphere boundary. It is also obtained as the mirror of the

Table 4 Pixel-ray mapping of a spherical refraction ray-pixel camera. A
virtual pixel parameterized by θq is associated with a pixel-wise
focal length fq(θq) ∈ R. The derivative d fq(θq)

dθq
is also stored for our

numerical 3D-2D projection.

pixel θq0 θq1 · · · θqN

ray fq(θq0) fq(θq1) · · · fq(θqN )
d fq(θq)

dθq
f ′q (θq0) f ′q (θq1) · · · f ′q (θqN )

point pi because of the symmetrical relationship between incident
path ℓi and outgoing ℓo w.r.t. the monocentric lens.

As shown in Fig. 16, ℓi and ℓo are in line symmetry to the line
that is perpendicular to the vector np through the point oD. That
is, given the point pi, its reflection po is described as

po = Hp pi + t p,

⇔ po =
(
I − 2npn⊤p

)
pi + 2(o⊤Dnp)np,

(32)

where Hp is the Householder matrix and t p denotes the center of
reflection. Besides, the direction np is given as

np =

cos( π2 + θDi − θg)
sin( π2 + θDi − θg)

 = −sin(θDi − θg)
cos(θDi − θg)

 , (33)

therefore, Hp and t p are rewrite to

Hp =

cos2(θDi − θg) sin2(θDi − θg)
sin2(θDi − θg) −cos2(θDi − θg)

 ,
t p =

 −dDsin2(θDi − θg)
dDcos2(θDi − θg) + dD

 . (34)

The direction uo is also given with Householder matrix as

uo = Hpui. (35)

As a result, the intersection ofq = (0, fq)⊤ of the ray ℓo and the
optical axis is given as follows:

ofq = touo + po, (36) 0
fq

 = to

ruozuo

 + rpo

zpo

 ,
⇔ fq = zpo

+

(−ruo
zuo

)−1

rpo
. (37)

The inverse process is similarly obtained for a given path ℓo.
The analytical 3D-2D projection, however, requires solving a
10th-degree equation[55]. The next section introduces a ray-pixel
camera which exploits the axial symmetric structure of the rays
to provide an efficient numerical 3D-2D projection.

4.2 Spherical Refraction Ray-Pixel Camera Model
Up to this point, we observed that the rays emitted from a per-

spective camera through a monocentric lens show an axially sym-
metric structure around the line from the camera center to the lens
center. As illustrated in Fig. 15, given a pixel pp by specifying θp,
the corresponding ray ℓo can be determined uniquely.

This section introduces our spherical refraction ray-pixel cam-
era model by representing the ray-pixel mapping as follows.

Fig. 17 illustrates the light path from a pixel pp on the plane-of-
refraction. Suppose the emergent ray ℓo intersects with the optical
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Fig. 17 3D-2D projection of spherical refraction ray-pixel camera model.
The black line ℓo is the correct projection path that intersects with
the optical axis at the camera center o0. Our 3D-2D projection hy-
pothesizes a line ℓλ as an initial guess of projection, and then opti-
mizes it by verifying if the point and the angle of intersection with
the optical axis is consistent with the ray-pixel mapping ⟨θq, fq⟩.

axis at ofq = (0, fq)⊤ with angle θq. Obviously, changing the po-
sition of pp in r direction results in changing the corresponding
ℓo, i.e., ⟨ fq, θq⟩ pair.

That is, since the mapping between the pixel pp and the ray
ℓo is bijective because of the reversibility of light, representing
the light paths from the pixels in r space is identical to knowing
all possible ⟨ fq, θq⟩ pairs. In other words, the system of Fig. 17
as a whole can be seen as a pixel-wise varifocal camera which
changes the focal length fp for each virtual pixel parameterized
by θq. In fact, the mapping θq 7→ fq is a monotonic function due
to the spherical structure of the lens.

Table 4 shows our ray-pixel mapping. Due to the spherical
structure of the lens, this is a discretization of the monotonic func-
tion θq 7→ fq by θq. In practice, we sample θq so that their inter-
val results in a sub-pixel sampling in the original image domain.
Notice that the derivative d fq(θq)

dθq
is also stored for our numerical

3D-2D projection as described later.
4.2.1 2D-3D Projection

Given a virtual pixel θq, the corresponding light path ℓo is sim-
ply given by

ℓo : ofq + twuo = ofq + tw

− sin(θq)
cos(θq)

 , (38)

where the parameter tw represents the depth. The mapping be-
tween θq and the camera pixel can be provided by the measure-
ment model in Section.4.1 , which can also be stored in the ray-
pixel mapping table (Table 4) in practice.
4.2.2 3D-2D Projection

Instead of solving a 10th-degree equation[55] analytically, this
section introduces a numerical 3D-2D projection using our ray-
pixel mapping table (Table 4.

Similar to the case of planar refraction ray-pixel cameras in
Section3.2.3, the key idea of our numerical 3D-2D projection is
to hypothesize a projection line ℓλ in Fig. 17 first, and check if it
intersects with the optical axis at the identical virtual focal length
stored in the ray-pixel mapping table. If the focal lengths are not
identical, then ℓλ, i.e., the virtual pixel θq equivalently, is refined
to minimize the difference.

We can formulate this process as a Gauss-Newton optimization
as follows.
Gauss-Newton Method

As shown in Fig. 17, let us consider the ray ℓλ from pw which

intersects the axis at Λq(0, λq) with an angle θq, i.e., by hypothe-
sizing that the 3D point is projected to a virtual pixel θq, we can
compute the intersection Λq(θq) = (0, λq(θq)⊤ of ℓλ and the opti-
cal axis. If λq is equal to the virtual focal length fq(θq) stored in
the ray-pixel mapping, the ray ℓλ is identical to ℓo, and hence that
can intersect with the optical axis at the camera center o0.

That is, the numerical 3D-2D projection can be achieved by
solving the following optimization:

θq = argmin
θq

G(θq) = argmin
θq

(
fq(θq) − λq(θq)

)
. (39)

Here G(θq) is a monotonic function and hence we can refine θq
iteratively as

θ(k+1)
q = θ(k)

q −G
∆θq

∆G

= θ(k)
q −

fq(θ(k)
q ) − λq(θ(k)

q )

f ′q(θ(k)
q ) − λ′q(θ(k)

q )
,

(40)

where θ(k)
q denotes θq of kth iteration.

Therefore, if we compute the derivative f ′q beforehand as
shown in the third row of Table 4, then this 3D-2D projection
can be computed efficiently.
Computational Efficiency

Table 5 Average computational costs of single 3D-2D projections.

Analytical[55] By Newton with LUT (ours)
Runtime 3.93 msec 0.62 msec

As shown in Table 5, our 3D-2D projection is much faster
than the analytical way while maintaining the sub-pixel accuracy.
They are the average values of 100 trial, 10K points 3D-2D pro-
jections run in Matlab on an Intel Core-i7 2.6GHz PC. The same
as the case of planar refraction, the result shows our Spherical
Refraction Ray-Pixel Camera compactly realize the 3D-2D pro-
jection, while the analytical way requires the process that choos-
ing the solution from the roots of the higher-degree equation for
each point.

4.3 Multifacet Mirror
As is well known, observing the scene via a multifacet mirror

or a kaleidoscope is identical to observing the scene by virtual
multi-view cameras, and in particular, kaleidoscopes with three
mirrors are known to be reasonable in terms of less overlaps of
mirrored images called discontinuities[56], [57]. In our teleido-
scopic imaging system, we use a three-facet mirror which defines
reflections of the spherical refraction ray-pixel camera introduced
in Section 4.2.

The reflection p′ of a 3D point p by a mirror of normal ni and
distance d is given by

p′ = Hi p+ ti

⇔ p′ =
(
I − 2nin⊤i

)
p+ 2dini,

(41)

where Hi the Householder transformation matrix.
In the case of kaleidoscopic imaging, the mirrors generate

bouncing reflections as shown in Fig. 18. The reflection of p′

by another mirror of normal nj and distance d is given simply by
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Fig. 18 Kaleidoscopic imaging. (a) Mirrored Cameras. (b) Chambers in the
real camera image. The label i of Ci and u(i) denote the reflections
of C and u by the ith mirror respectively.
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C
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osc

Fig. 19 Depth-of-field of thin lens camera with aperture. The red and blue
lines show the backprojection of the permissible circle-of-confusion
δ through the aperture Φ. DF and DN denote the near and the far
depth-of-fields.

p′′ = Hi j p+ ti j

= H jHi p+ 2d jnj + 2H jdini.
(42)

As a result, catadioptric imaging systems can be modeled as a
multi-view spherical refraction ray-pixel cameras. They share the
single monocentric lens, and the pose of each virtual cameras can
be computed by Eq. (42) if the mirror parameters are given. The
later section describes our calibration algorithm to estimate such
parameters.

4.4 Depth of field
This section describes analytical evaluations on the depth-of-

field of a catadioptric imaging system. We first review the depth-
of-field of the thin lens camera model, and then introduces the
monocentric lens.
4.4.1 Depth-of-Field of Thin Lens Camera

Ideally all the incident light rays from a subject point to the lens
focuses at a common point. As shown in Fig. 19, suppose that a
point osc is focused on the image plane of a camera C through
its lens L. Then the following thin lens formula for paraxial ray
holds:

1
sc
+

1
tc
=

1
fc
. (43)

The depth-of-field is defined as the backprojection of the per-
missive circle-of-confusion centered at the focused point. If the
subject distance sc is not long enough, the near and the far depth-
of-focus ϵN and ϵF are given by aperture size Φ and tc as

ϵN =
δtc
Φ − δ =

δsc fc
(Φ − δ)(sc − fc)

, (44)

ϵF =
δtc
Φ + δ

=
δsc fc

(Φ + δ)(sc − fc)
.

The near and the far depth-of-field DN and DF corresponding
to ϵN and ϵF are then obtained by Eq. (43) as

oD

ofq
o0

C

L

Φ

tcsc
sD tD

rD osc

hsc

hsD htc

dD

Fig. 20 Light paths through the monocentric lens. Notice that the center of
the beam is identical to the light path in Fig. 16.
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Fig. 21 Depth-of-field with monocentric lens. DF and DN denote the depth-
of-field of the camera itself without the monocentric lens. The ef-
fective depth-of-field of the entire system LF and LN can be ob-
tained by projecting DN and DF through the monocentric lens (the
red and blue dashed lines).
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Fig. 22 Depth-of-field with and without monocentric lens. (a), (b) and (c)
shows the total, near, and far depth-of-field with and without a
monocentric lens. The red and blue plots indicate the results with
and without the monocentric lens respectively. The green lines in-
dicate the subject distance where the subject and the focal distances
of the monocentric lens itself are same.

DN =
ϵN(sc − fc)2

f 2
c + ϵN(sc − fc)

, DF =
ϵF(sc − fc)2

f 2
c − ϵF(sc − fc)

. (45)

As a result, DN and DF are described as follows:

DN =
δsc fc(sc − fc)

(Φ − δ) f 2
c + δsc fc

, DF =
δsc fc(sc − fc)

(Φ + δ) f 2
c − δsc fc

. (46)

Eq. (46) indicates that the depth-of-field of camera C depends
on the subject distance sc, the aperture sizeΦ, and the permissible
circle-of-confusion δ.
4.4.2 Depth of Field with a Monocentric Lens

Fig. 20 illustrates the back-projection of the permissible circle-
of-confusion through a thin lens and a monocentric camera. The
light path through the lens center o0 is identical to the path illus-
trated in Fig. 16.

The key point is that an on-focus scene point at the distance sD

is also on-focus at the distance sc between the two lenses. That
is, depth-of-field with a monocentric lens can be simply defined
as an extension of the path of the thin lens camera. This is be-
cause the points in LN and LF are projected within the permis-
sible circle-of-confusion even though the monocentric lens itself
introduces the spherical aberration.

Hence, we define the depth-of-field with a monocentric lens LN

and LF as the intersection of the backprojection path through the
edge of aperture (the led and blue dash lines in Fig. 21) and the
backprojection path through the lens center o0.

Fig. 22 shows the changes in the depth-of-field by the mono-
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Fig. 23 Depth-of-field of catadioptric imaging system. DN and DF denote
the near and far depth-of-field of the thin lens camera C respec-
tively. All the points once imaged within DN -DF should be origi-
nally emitted from the points within LN -LF .
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LF
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DN
DF

12

1

Fig. 24 Intersection of depth-of-fields in catadioptric imaging system. The
red curves illustrate the plots of LN -LF of the original camera, and
the green and the blue curves illustrate those of the first and the
second reflections. Notice that the mirrors are at off-perpendicular
angle of 1.4◦ from the camera image plane and hence surrounding
viewpoints are generated.

centric lens, in the case of capturing an object of 0.5mm height at
the same magnification.

Fig. 22(a) shows the total depth-of-field with and without the
monocentric lens LN + LF (red and blue respectively). Fig. 22(b)
and (c) shows LN and LF in the same manner. In these figures, the
horizontal axis indicates the apparent size of the target in pixel,
with assuming the measurement model used in Section 5.4.

In the both cases, the depth-of-field decreases by increasing the
magnification in general, while the depth-of-field with the mono-
centric lens becomes clearly deeper from a specific subject dis-
tance. This distance is near from the point where the subject dis-
tance of the monocentric lens sD− rD is equal to its focal distance
tD − rD. That is, if the target is located closer than this distance,
the monocentric lens can contribute to achieve a deeper depth-of-
field and hence less blurry imaging.
4.4.3 Depth of Field of a Catadioptric Camera

Fig. 23 illustrates the near and the far depth-of-fields of a vir-
tual camera Ci defined as a mirror of the original camera. Due
to the aperture, the near and the far depth-of-fields form a curve
respectively (the red and the blue dashed lines).

Since the catadioptric imaging system has multiple virtual
cameras as shown in Fig. 18, each of them has a different depth-
of-field according to their relative pose to the monocentric lens as
shown in Fig. 24. That is, the intersections of such depth-of-fields
can be used for multi-view stereo reconstruction for example.

5. Teleidoscopic Imaging System
In this section, we aimed at proposing a catadioptric imaging

(a) (b)

Fig. 25 Two types of catadioptric system for multi-view microscopy. Telei-
doscopic imaging system shown in (b) provides semi-surrounding
views and less blurry images compared with the system shown in
(a), which provides virtually fully surrounding views with larger
differences in optical path lengths in closed-up scenarios.

system for microscopic object capture. Unlike conventional mi-
croscopic imaging system such as differential phase contrast mi-
croscopy[58], [59] and multi-focus approaches[60], [61], [62],
our method realizes a multi-view capture of the target from a
single physical viewpoint which can contribute to free-viewpoint
rendering, 3D shape reconstruction, and reflection analysis.

The main challenges in image-based microscopic 3D shape
measurement is its shallow Depth-of-Field and camera arrange-
ment in the closeup scenario. Applying conventional multiple
camera system designed for human-size capture[63], [64] can-
not be a feasible solution due to limitations on camera placement.
Conventional multiple mirror system[56] also have difficulties in-
evitably in depth-of-focus due to differences in their optical paths
with varying numbers of bounces.

The key idea to solve these problems is to employ a catadiop-
tric imaging system which realizes a practical closeup multi-view
imaging. The point of our design is that the system has a mono-
centric front lens like a teleidoscope, instead of using microscopic
system in the camera side. That is, as shown in Fig. 25, we intro-
duce a kaleidoscopic multi-facet mirror between the front lens
and the camera. As discussed later, this design realizes a deeper
depth-of-field and results in less blurring imaging.

We call our system teleidoscopic imaging system and show that
the system can be compactly modeled by a structured ray-pixel
camera model[8].

5.1 Calibration of Teleidoscopic Imaging System
This section introduces our calibration algorithm of teleido-

scopic imaging system which requires capturing a single ref-
erence planar patterns. Fig. 26 shows the measurement model
where the real camera C observes reference points pw such as
chessboard corners on a reference boardΠ via a monocentric lens
and three mirrors. Our calibration estimates the mirror normals
ni, their distances di from the camera, and the position of the
monocentric lens, with assuming that the 2D positions of the ref-
erence points pw on the reference plane Π, the intrinsic parame-
ters of the camera, and the refraction index of the lens are given
beforehand.

A challenge in this calibration is the fact that the mirrors re-
quire observing 3D points and their reflections to estimate their
poses[56], while the observation in the teleidoscopic system does
not include such mirrored points that follow Eq. (42) due to the
refraction by the monocentric lens. Similarly, the rays reflected
and then refracted through the projection in teleidoscopic imag-
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Fig. 26 Calibration of teleidoscopic imaging system. Cyan lines denote the
light paths for a mirrored camera. The calibration can be conducted
by capturing a reference points on a plane with a known geome-
try, even if the reference points are captured through a refractive
medium.

ing system do not satisfy the coplanarity constraint. In addition,
as mentioned in [55], the estimation of the monocentric lens pa-
rameters requires multiple viewpoints or multiple monocentric
lenses.

These points indicate that this is a chicken-and-egg problem of
the following form:
( 1 ) estimation of the monocentric lens parameters requires the

mirror parameters,
( 2 ) estimation of the mirror parameters requires at least one mir-

rored point pair, and
( 3 ) estimation of a mirrored point pair requires the monocentric

lens parameters to handle the refraction.
To solve this problem, we utilize the fact that the positions of

the centers of the monocentric lens and its mirrors are always
captured without refraction by definition, and satisfy Eq. (42).
Therefore, we start by estimating the center of the monocentric
lens from the captured reference points.

In what follows, p(0)
p denotes the real image of a reference

point pw in the camera C. Similarly p(i)
p (i = {1, 2, 3}) denotes

the image of its first reflection by the mirror i, and p(i j)
p (i j =

{12, 13, 21, 23, 31, 32}) denotes its second reflection by the mir-
rors i and j.
5.1.1 Axis of Monocentric Lens

The axis to the center of monocentric lens a(0)
v from the camera

C can be estimated by pw-p(0)
p correspondences. Similarly to [55],

we estimate a(0)
v by the coplanarity constraint of the three vectors

a(0)
v ，p(0)

p ，pw on a plane-of-refraction:

p(0)⊤
p

(
a(0)
v × (RΠ pw + tΠ)

)
= 0,

⇔ p(0)⊤
p

(
EΠ pw + sΠ)

)
= 0,

(47)

where RΠ, tΠ are the pose of the reference plane in the camera co-
ordinate system and EΠ = a(0)

v ×RΠ and sΠ = a(0)
v × tΠ. Since this

is a linear equation with 9 unknown parameters of EΠ and sΠ, we
can obtain EΠ and sΠ up to scale by observing at least 8 points on
the reference plane. Using the estimated EΠ the axis a(0)

v is given
by

a(0)
v =

EΠ(:, 1) × EΠ(:, 2)
||EΠ(:, 1) × EΠ(:, 2)|| . (48)

Similarly, the axis to the center of the mirrored monocentric
lens a(i)

v can be obtained by the mirrored points p(i)
p .

5.1.2 Mirror Normals
The axis to the center of monocentric lens a(0)

v =

(x(0)
av , y

(0)
av , z

(0)
av )⊤ and its mirror a(i)

v = (x(i)
av , y

(i)
av , z

(i)
av )
⊤ are formed in

reflection satisfies

a(0)⊤
v [ni]×a(i)

v = 0, (49)

where [ni]× denotes the skew-symmetric matrix defined by the
normal ni = (xni , yni , zni )

⊤ of the mirror i.
The same constraint holds for each of the first-second reflection

pairs a(i)
v -a(i j)

v about the same mirror normal ni[56]. Therefore ni

can be obtained linearly only from the axes to the centers of the
monocentric lenses.
5.1.3 Mirror Distances

Once the mirror normals are estimated, we can utilize the kalei-
doscopic triangulation[56] to obtain linear constraints on the mir-
ror distances di. That is, for the first and the second reflections
such as Ci and Ci j, following equation holds:

(a(0)
v × (Hi ja

(i j)
v ))⊤(0 − ti j) = 0

⇔ (a(0)
v × (H jHia

(i j)
v ))⊤(0 − 2d jnj − 2H jdini) = 0.

(50)

By integrating Eq. (50) for i j = {12, 13, 21, 23, 31, 32} as a set
of linear equations of di (i = 1, 2, 3), we linearly obtain d1, d2, d3

up to scale.
5.1.4 Pose of Reference Plane

Similarly to Eq. (47), the plane-of-refraction constraint holds
for the mirrored cameras Ci:

(p(i)
p )⊤

(
a(i)
v × (Hi(RΠ pw + tΠ) + ti)

)
= 0. (51)

This constraint allows us estimating the pose of the reference
plane RΠ and tΠ linearly.
5.1.5 Monocentric Lens Parameters

The calibration algorithm up to this point does not require the
monocentric lens parameters dD, rD, and µg. We estimate these
parameters by the coplanarity constraint of the ray through p(i)

p of
Ci:

u(i)o × (p(i)
w − p(i)

o ) = 0. (52)

This is a nonlinear constraint for the monocentric lens parame-
ters as described in Section 4.1.1 and we solve this as a nonlin-
ear optimization problem with assuming their rough estimates are
available in practice.
5.1.6 Bundle Adjustment

The last step of our calibration is to refine the parameters
a(0)
v , dD, rD, µg, ni, di,RΠ, tΠ (i = 1, 2, 3) by minimizing the re-

projection errors of the reference points pw as a nonlinear opti-
mization problem. On computing the 3D-2D projection, we used
the analytical solution by [55].

5.2 Evaluation
In this section, we evaluate the calibration of our catadioptric

ray-pixel camera.
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Fig. 27 Teleidoscopic system for quantitative evaluation.

5.2.1 Quantitative Evaluation using Synthesized Data
Fig. 27 shows the measurement environment which simulates

the real capture system used in Section 5.4. The system has a
kaleidoscope with three 10 × 30mm mirrors in front of the camera
C. The mirrors are at slightly off-perpendicular angle of 1.4◦ to
the camera image plane so that the mirrors define virtual cameras
around the target with less overlaps of the mirrored images. The
system also has a monocentric lens of 10mm diameter in front of
the mirrors, at 40mm distance from the camera. The refraction
index µg is set to 2.0.
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Fig. 28 Reprojection errors at different noise levels. The bars denote the
standard deviation of the errors.

The system captures 48 reference points (blue dots in Fig. 27)
to calibrate its parameters. By injecting Gaussian noise of differ-
ent standard deviations σ to the 2D positions of their projections,
we evaluate the robustness of our calibration procedure.

Fig. 28 shows average reprojection errors in pixel of 100 trials
at each pixel noise level σ. We can observe that the reprojection
errors increases linearly against the pixel noise level.

Figs. 29, 30, 31 show the estimation errors of the monocentric
lens parameters, the mirror parameters, and the reference plane
parameters respectively. These results indicate that our calibra-
tion algorithm performs reasonably under realistic observation
noise.

5.3 Teleidoscopic Triangulation
Since our Teleidoscopic Imaging System has multiple ray-

pixel cameras, the manner of the triangulation is the same as de-
scribed in Section 3.3.2.

In the case of three or more viewpoints, depending on the num-
ber of the cameras sharing an intersection of the depth-of-fields
(Fig. 24), we can add equations in the same form into this system
for triangulation.

5.4 Teleidoscopic 3D Shape Reconstruction
To evaluate the proposed teleidoscopic system as a multi-view
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Fig. 29 Estimation errors of the monocentric lens parameters. Left: Angu-
lar error of the axis to the monocentric lens center (degree). Right:
Distance error normalized by the ground truth.
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Fig. 30 Estimation errors of the mirror poses. Left: Angular error of the
mirror normal (degree). Right: Distance error normalized by the
ground truth.
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Fig. 31 Estimation errors of the reference plane pose. Left: Rotation error
(Riemannian distance). Right: Distance error (RMS normalized by
the ground truth).

(a) (b) (c)

Fig. 32 Teleidoscopic imaging. (a) Captured object (approximately 5mm
size). (b) Image by our system. (c) Image Without the monocentric
lens. The refraction by the monocentric lens provides the surround
view.

camera system for 3D shape reconstruction, this section demon-
strates a 3D reconstruction of a small object of approximately
5mm size shown in Fig. 32(a).

The system consists of a FLIR Flea3 FL3-U3-88S2C-C camera
(4000×3000 resolution, pixel size 1.55µm) with an S-mount lens
(focal length 3mm, F8), three 10 × 30mm mirrors, and a mono-
centric lens of 10mm diameter whose refraction index is µg = 2.0.

Figs. 32(b) and (c) show images captured by our teleidoscopic
system and by its kaleidoscopic part without the monocentric
lens. These images clearly demonstrates that the use of the mono-
centric lens realizes a denser close-up surrounding multi-view
capture of the target.

In order to demonstrate the idea of our teleidoscopic multi-
view capture, we introduce a focus-free laser projector Sony MP-
CL1A to cast structured light patterns[53], [54] to minimize er-
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(a) (b) (c)

Fig. 33 Teleidoscopic imaging system with a projector. (a) Overview. (b)
Captured image under a structured illumination. (c) Decoded result.

(a)

(b)

(c)

Fig. 34 Result of 3D shape estimation. (a) Overall view of the result. (b)
Enlarged view of the result. (c) A part of captured image under the
scene light (in base chamber).

rors in the stereo correspondence search process as shown in
Figs. 34(b) and (c).

Figs. 34(a) and (b) show the result of our 3D reconstruction as
a point cloud. This result demonstrates that our system realizes a
closeup and surround-view capturing successfully.

6. Conclusion
This paper proposed a catadioptric ray-pixel camera model ex-

ploiting an axially-symmetric structure of the rays captured by
the system. Our model describes the ray associated with each
pixel by a simple 1D mapping, and realizes an efficient forward
3D-2D projection.

The proposed system realized a closeup, semi-surround view,
and less blurring imaging system for microscale objects. Our fu-
ture work includes an extension to fully-surround view 3D cap-
ture of microscale underwater objects, with immersing the front
monocentric lens in water.
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