
MULTI-VIEWPOINT SILHOUETTE EXTRACTION WITH 3D
CONTEXT-AWARE ERROR DETECTION, CORRECTION,

AND SHADOW SUPPRESSION

S. Nobuhara, Y. Tsuda, T. Matsuyama, and I. Ohama

Advanced School of Informatics, Kyoto University, Japan

Keywords: Silhouette extraction, Multi-viewpoint images

Abstract

This paper presents a novel approach for silhouette extraction
from multi-viewpoint images. The main contribution of
this paper is a new algorithm for 1) 3D context-aware error
detection and correction of 2D multi-viewpoint silhouette
extraction and 2) 3D context-aware classification of cast-
shadow regions. Some experiments demonstrate advantages
against previous approaches.

1 Introduction

In recent years, the importance of silhouette extraction is
increasing because many 3D shape reconstruction algorithms
utilize the visual hull of the object given by SFS (shape-from-
silhouette) method [1–3,8,11–15]. These algorithms use visual
hulls as their initial estimations, and then refine them based on
multi-viewpoint textures and/or other reconstruction cues.

In silhouette extraction for 3D shape reconstruction, it is
reasonable and widely used to assume that we can use
the background images on every viewpoint and can apply
background subtraction individually. However, one of the most
fundamental difficulties in the monocular silhouette extraction
is ambiguities due to the comparison between the similar
foreground and background colors.

To overcome this problem, we introduce an algorithm which
can exploit the multi-viewpoint environment since we capture
a common object from the different viewpoints for 3D shape
reconstruction. First we model the observed images as a union
of the following three types regions: (1) object regions, (2)
cast-shadow regions, and (3) background regions. Then we
define an algorithm based on the following two questions –
“Can a 2D region carving of the silhouette on a viewpoint
be acceptable on the other viewpoints? If not, how can we
correct it?” and “Can a 3D region be recognized as a cast-
shadow region on every viewpoint?” We utilize them as an
inter-viewpoint constraint and introduce a 3D context-aware
error detection, correction and shadow suppression for multi-
viewpoint silhouette extraction of the object.

This paper is organized as follows. In Section 2, we review
related work with emphasis on the differences compared to
our algorithm. We describe our algorithm in Section 3, and

evaluate it against other approaches in Section 4. We conclude
our paper and discuss possible future work in Section 5.

2 Related work

For multi-viewpoint silhouette extraction, various approaches
have been proposed so far [5] [9] [16] [4] , but they does
not have explict error detection and correction on silhouette
regions based on 3D geometry. Zeng and Quan proposed
a method which uses an inter-viewpoint constraint and 2D
segmentation of captured images [16]. Their method realized
silhouette extraction without background images. However it
totally depends on the accuracy of 2D segmentation of captured
images and can neither detect nor correct any errors. This is
because their method requires perfect segmentation of captured
images which separates the object and background regions.
Goldlücke and Magnor proposed a method which realized
simultaneous 2D segmentation and 3D reconstruction based on
graph-cuts [4]. However, it requires a dense full 3D depth-map
of the background such as the studio floor, walls, and all the
visible items, and it has a limitation on the camera arrangement
as same as voxel coloring. Guillemaut [5] et al. also proposed
a novel framework for multi-viewpoint environment, but it is
not possible to recover errors on pixels such that foreground
and background colors are quite similar. This is because their
“conservative visual hull” can fill holes only if each of their
projection is near by the pixels with vivid differences between
foreground and background.

For shadow suppression in silhouette extraction, one of
the most simple and effective approaches is intensity and
chromaticity based categorization of shadow regions [7]. In
this approach, each pixel is categorized as shadow region if it
is similar to the background pixel in chromaticity but different
in intensity. This approach provides significant improvement
in comparison with simple background subtraction using a
certain threshold. However, these 2D image based silhouette
extraction do not consider 3D context of each pixel. They can
suppress real cast-shadows on the floor, but they also suppress
self-shadow regions on the object surface and darkly-textured
regions like black hair.

The main advantages of this paper are the following points.
(1) Our algorithm can detect and correct errors on the 2D
segmentation of silhouettes based on an inter-viewpoint
validation process, and (2) can suppress shadows with 3D
context consideration. While our algorithm requires a 3D

geometry of the studio floor, it is known for calibrated 3D
capturing environment (described below).

3 Algorithm

The goal is to obtain the object silhouettes on every viewpoint
which are consistent with each other. To achieve this, we
model the observed images can be decomposed into (1) object
regions, (2) cast-shadow regions, and (3) background regions.
We denote this by Img → Obj + CS + Bg. Based on this
modelling, we introduce a two-step approach. The first step
extracts Obj + CS from Img and the second step extracts Obj
from Obj + CS. As described in Section 1, the key concept of
both algorithms is 3D-context.

Our algorithm assumes calibrated cameras, known background
images, and the floor plane where the cast-shadows of the
object can appear. This floor assumption is reasonable for
3D shape reconstruction based on SFS. This is because
conventional voxel-based SFS implementations require a
certain bounding box which encages the object, and it is
adequate to use the studio floor as the bottom of the bounding
box.

In what follows, we denote the number of cameras by N , the
i-th camera by Ci, the silhouette on Ci at t-th iteration step
by Sili(t), the segmented image on Ci at t-th iteration step by
Segi(t), the visual hull computed with silhouettes at t-th step
by VH(t), the projection of VH(t) on Ci by Svhi(t) .

3.1 The 3D context-aware extraction of silhouettes and
shadows

First, we introduce an algorithm which extracts both object
regions and cast-shadow regions from multi-viewpoint images.
That is, we extract Obj + CS from Img on each viewpoint. To
achieve this extraction, we utilize two constraints proposed by
Zeng and Quan [16].

Intersection constraint (IC) : Projection of the visual hull
which is computed from silhouettes on every viewpoint
should be equal to the silhouette on each viewpoint.

Projection constraint (PC) : Projection of the visual hull
should have outline which matches with apparent edges
of captured image on each viewpoint.

As described in [16], these two constraints produce a set of
silhouettes such that each of them is NOT the background
region. That is, silhouettes given by these constraints cannot
suppress shadows cast by the object itself because cast-
shadows on the floor also satisfy IC and PC. That is, IC and
PC enable us to extract Obj + CS from Img. In addition to
them, we introduce the following constraint to realize 3D
context-aware error detection and correction.

Background subtraction constraint (BC) : The sum of
differences between the background and captured image
in projection of the visual hull should be greater than a
certain threshold.

Current segmentation

Current intersection-consistent silhouette

Projection-consistent
silhouette

Carve

Figure 1: Silhouette carving

CAM1

CAM2

Visual hull

Carved volume

Figure 2: Intersection consistency

We employ an iterative process in which we carve silhouettes
per segments so that they satisfy these three constraints.
Note that our method based on the image segmentation, but
segmentation errors are corrected through the iteration.

3.1.1 Silhouette carving

In each iteration step, we carve a silhouette so that it satisfies
PC. We apply color-based segmentation on captured images,
and consider that a silhouette satisfies PC if it is composed
by a set of segments. So we define our carving algorithm as
follows:

• For each segment of the captured image,
– If any portion of the segment is located outside the

silhouette, carve the whole segment region from the
silhouette.

We denote this operation by Carve(Silj(t), Segj(t)), where
Silj(t) and Segj(t) denote the silhouette and segmented image
of Camera j at t-th iteration respectively. Figure 1 illustrates
this operation. Note here that this operation is done for all
segments, and the order of selection does not affect the result.

3.1.2 The 3D Context-aware error detection and
correction

Suppose we have a set of silhouettes which satisfies IC. If we
carve a silhouette Silj on camera Cj so that it satisfies PC,
the visual hull will also be carved and its projection on each
camera will be equal to or smaller than the original silhouette
which satisfies IC. For example, if we carve the black area of
CAM1 in Figure 2, the corresponding volume of the visual
hull is also carved, and it is observed as the removal of the
gray area on CAM2. That is, carving one of the intersection-
consistent silhouettes makes it projection-consistent, but breaks
intersection-consistency between other silhouettes. Here, if
the changes between the projection of visual hull Svhi(t)

Visual hull

Sil1(0) Sil3(0)Sil2(0) Sil4(0)

Figure 3: Initial silhouettes

Initial segmentation

Initial intersection-consistent silhouette

Projection-consistent
silhouette

Carve

Figure 4: First iteration step

and the original silhouette Sili(t) are acceptable on the other
viewpoints, we take the projections of visual hull as new
silhouettes. We use BC to determine if it is acceptable or not
(described below). This process makes the silhouettes satisfy
IC again, and PC on Silj as well.

On the other hand, if the changes are not acceptable in
terms of BC, it is clearly correct to regard that the last
carving of the silhouette is wrong, i.e., segments carved in the
last Carve(Silj(t), Segj(t)) operation are too large and they
contain not only the background but also the object regions.
This indicates that we need re-segmentation of segments in
question into smaller segments, and we can retry to check if
re-carving is acceptable or not.

In this error detection process, we define the function

IsAcceptable(Sili(t),Svhi(t))

=
{

true
∑

p |Fg(p) − Bg(p)| < threshold,
false otherwise, (1)

where p is a pixel such that p ∈
(
Sili(t) ∩ Svhi(t)

)
. That

is, p denotes a pixel which belongs to Sili(t) but not to
Svhi(t). Fg(p) and Bg(p) denote the intensities of captured
and background image at p respectively. This function verifies
the changes between the projection of visual hull Svhi(t) and
the original silhouette Sili(t) if it satisfies BC or not.

3.1.3 Iterative algorithm

Using constraints and functions defined above, we introduce
the following algorithm which extracts Obj + CS from Img on
every viewpoint.

Step 0 Let all the silhouettes on every viewpoint be equal
to the entire region of the image. Then we compute
the visual hull with these silhouettes and project it onto
each viewpoint. We use this projections as Sili(0), i =
1, . . . , N (Figure 3). Here, we have a set of multi-
viewpoint silhouettes which satisfies IC, and start iteration
with t = 1.

Step t.1 Choose a camera Cj which is not chosen in the
previous N − 1 iterations.

Step t.2 Let Silj(t) := Carve(Silj(t − 1), Segj(t − 1)).
Carve(·) produces silhouette which satisfies PC. Figure
4 and 1 illustrates this operation in t = 1 and t ≥ 1.
Then, in other viewpoints, use previous silhouettes as is:
Sili(t) := Sili(t − 1), i ̸= j.

Step t.3 Compute the visual hull VH(t) using silhouettes
Sili(t) and its projections Svhi(t) where i = 1, . . . , N .

Step t.4 If there is no differences between Svhi(t) and Sili(t)
for the last N iterations, quit the iteration. Here, each
Sili(t) satisfies PC, IC, and BC.

Step t.5 Evaluate the differences between Svhi(t) and Sili(t)
by IsAcceptable(·), where i = 1, . . . , N . If the number
of cameras on which the function returns true is greater
than a certain threshold, let Sili(t) := Svhi(t), j =
1, . . . , N and go to the next step t + 1. Otherwise, re-
segment Segj(t − 1) and go back to Step t.2.

This iterative algorithm can remove Bg regions in theory. We
use the resultant Obj + SC as the input of the next algorithm.

3.2 The 3D context-aware shadow removal

Let Scsj denote the silhouette on Cj given by the algorithm
described in the previous section. As described above, Scsj

includes both Obj and CS regions. The goal of the algorithm
we introduce in this section is removal of CS from Scsj , j =
1, . . . , N .

Suppose we have visual hull Vcs computed from Scsj , j =
1, . . . , N . In this computation, we assume that we use a
bounding box whose bottom is equal to the floor of the
capturing studio as described above. Let the floor plane be
z = 0. Our algorithm categorizes the surface of Vcs into Obj
region, CS region, or part of the floor. In this categorization
process, our algorithm needs to explore the surface of Vcs. So
we use triangular surface mesh model as the data structure of
Vcs for simplicity. Let f denote a triangle of Vcs, Fo the set of
triangles categorized as Obj, Fs the set of triangles categorized
as CS, and Ff the set of triangles categorized as part of the
floor.

3.2.1 Silhouette generation

Once we can categorize triangles into these types, we can
obtain silhouette on Cj which contains Obj only as follows:

1. Initialize silhouette and depth buffer of Cj . Let all pixels
in the silhouette buffer be background pixel, and all pixels
in the depth buffer be ∞.

CAM1

CAM2

CAM3

f

Vcs

Figure 5: Visibility checking

CAM1

CAM2

CAM3

CAM4Vcs

Floor

Fs Carved region

(a) Intersection consistent

CAM1

CAM2

CAM3

CAM4Vcs

Floor

Fs Carved region

(b) Not intersection consistent
Figure 6: Intersection consistent removal of cast-shadow
region

2. For each triangle f in Vcs,
2.1 Project f onto Cj , and let us denote the corresponding

area on Cj by P .
2.2 If the depth of f is smaller than those of

corresponding depth buffer area, update the depth
buffer by the depth of f . Otherwise, go to the next
triangle.

2.3 If f is in Fo, let the pixels in P be silhouette pixels.
Otherwise, let them be background pixels.

3.2.2 The cast-shadow model

We use the following two criteria to identify a triangle f as CS.

Geometric criterion: Cast-shadow region should neighbor
the floor plane. That is, one of the neighboring triangles
should be categorized as part of the floor. In addition
to this, removal of cast-shadow region on Vcs surface
should not affect object regions on silhouettes.

Photometric criterion: Cast-shadow region should have
similar chromaticity and darker intensity in comparison
with that of the background image on visible cameras.

Here, visible cameras are cameras such that it can observe the
triangle in question. For example, visible cameras of f in
Figure 5 are CAM1 and CAM2 since CAM3 cannot observe
f because of self-occlusion. Note that the above photometric
criterion assumes white (non-colored) lighting environment as
used in [7].

In this algorithm, we assume that we have knowledge where the
object casts its shadows by the camera calibration processed
beforehand. We use the floor of the studio, z = 0 plane, for
simplicity as described above. The geometric criterion states
that (1) each triangle in Fs should neighbor another triangle
in Fs or Ff , and (2) silhouettes produced by the algorithm
described above should be satisfy intersection consistency.
Figure 6(a) and (b) illustrate intersection consistent and non-
consistent case. In Figure 6(a), if we remove the region of
Fs on each camera, the silhouettes on visible cameras CAM1

and CAM2 will be carved. This carving on the silhouettes
will carve the visual hull Vcs as well, but all the silhouettes
satisfies intersection constraint since the carving of Vcs cannot
be observed from cameras CAM3 and CAM4 which cannot
observe Fs. On the other hand, if we remove the region of
Fs in Figure 6(b), the change of Vcs caused by the carving
of silhouettes on CAM1 and CAM2 will be observed from
cameras CAM3 and CAM4 which cannot observe Fs. That
is, the projection of carved Vcs is not consistent with the
silhouettes on CAM3 and CAM4, and silhouettes cannot
satisfy the intersection constraint. We can detect this situation
by using the following simple algorithm.

1. Let f be a triangle in question.
2. For each camera c which can observe f , project all

triangles in Vcs onto it. Let p denote the pixel on which
f is projected. In general, at least two triangles should be
projected on p.

3. If only f and triangles in Ff are projected on p, that
is, the visual cone from the projection center of c to f
crosses only the floor plane, the removal of f does not
affect the intersection constraint as shown in Figure 6(a).
Otherwise, the removal will affect as shown in Figure
6(b).

We denote this checking by FG(f, C) where C denotes the set
of all cameras C1, . . . , CN . It returns true if the removal of
f does not affect the intersection constraint, and otherwise it
returns false.

The photometric criterion utilizes a pixel-wise shadow
classifier which is same as those of [6, 7]. For each camera
which can observe a triangle f on it, we check if the pixel
corresponding to f is classified as cast-shadow or not. We
refer this photometric criterion test by FP (v, C) defined as
follows:

1. Let f be a triangle in question, and the number of cameras
n be 0 on which f satisfies the photometric criterion
defined above.

2. For each camera c which can observe f , project f onto
it. Let us denote the projected area by P and a pixel in
P by p. We refer the R, G, B values at p of the captured
and background images on c by Fi(p) and Bi(p) where
i = R,G,B.

• If all p ∈ P satisfies following (2) or (3), let n :=
n + 1.

0 ≤
∑

i(Bi(p) − Fi(p)) ≤ T1 (2)
T1 ≤

∑
i(Bi(p) − Fi(p)) ≤ T2∑

i Fi(p)Bi(p)√∑
i Fi(p)2

∑
i Bi(p)2

≥ T3 (3)

where T1, T2, T3 are certain thresholds. Equation (3)
represents the photometric criterion defined above.
We also use Equation (2) to let p be shadow region
if it is darker up to T1. This is because chromaticity
will be too sensitive than intensity in small values.

3. If f satisfies the photometric criterion on more than one

Vcs

Floor
Ff

F

Figure 7: Initial state of shadow suppression algorithm

CAM1 CAM2

Object

Figure 8: Apparent hole on 2D silhouette

camera, that is, n > 1, we categorize f as a part of cast-
shadow region and let FP (f, C) return true. Otherwise,
let FP (v, C) return false.

3.2.3 Algorithm

Using criteria described above, we define the algorithm
which removes shadow regions from silhouettes given by the
algorithm in Section 3.1. The key point of this algorithm is the
order of triangles to be checked if it is a part of shadow regions
or not. We traverse the mesh surface from the triangle which
is a part of the floor, i.e., f ∈ Ff . Since we assumed that all
cast-shadows should be neighbored by the floor regions Ff , we
can avoid checking the triangles which is a part of self-shadow
or darkly-textured regions not located around the floor.

Step 1 Compute Vcs as polygonal surface model. We used a
discrete marching cubes method [10].

Step 2 Let Ff the set of triangles such that each of them is
on z = 0 plane. Using Ff , we define F as the set of
triangles such that each of them is not in Ff and at least
one neighboring triangle is in Ff (Figure 7). We also
initialize Fo and Fs as empty set.

Step 3 For a triangle f ∈ F ,
Step 3.1 If f is classified as cast-shadow, i.e.,

both FG(f, C) and FP (f, C) return true, let
F := F + U − f and Fs := Fs + f where U
denotes set of triangles such that each of them does
not belong to Fo nor Fs.

Step 3.2 Otherwise, let Fo := Fo + f and F := F − f .
Step 4 If F ̸= ∅, go back to Step 3. Otherwise, project Vcs

onto each viewpoint and obtain final silhouettes by the
algorithm described in Section 3.2.1.

CAM1
CAM4

CAM3
CAM2

Object

Floor

Figure 9: Camera arrangement

3.3 Discussions

Termination of the algorithm: In the proposed algorithm in
Section 3.1, carved regions can be recovered due to the error
correction scheme as shown in Figure 16. However, it cannot
go into infinite loop since we re-segment the recovered regions
so that the region is split into smaller segments up to pixel level
(Figure 17). This one-way re-segmentation process makes the
iteration converge if we omit errors in single pixel level.

Limitation on error detection: It is clear that at least one
camera should observe the carved region to detect errors in the
algorithm in Section 3.1. If carving of the silhouette on j-th
camera at Step t.2 does not affect other silhouettes at Step t.4,
any carving is accepted. In this situation, our algorithm just
carves the silhouette based on the current segmentation since
we cannot use any information from other viewpoints.

Partial view case: In case that we cannot capture the whole
of the object as shown in Figure 10, we cannot use a naive
implementation of SFS method as follows – “If we have N
cameras, all the portions of the visual hull should be projected
onto silhouette region at all of N cameras.” We can use
the following definition instead – “All the portions of the
visual hull should be projected onto silhouette region at all of
observable cameras.” Here, we define a camera is observable
if the portion of the visual hull is projected inside its imaging
window.

Topology of silhouette region: Our algorithm carves
silhouettes from outside, and it is clear that Carve(·) operation
cannot carve holes inside the silhouette. That is, if the object
has a real 3D hole, our algorithm cannot estimate it since
the hole does not appear as a part of out-most contour of the
2D silhouette and the out-most contours satisfy IC. However,
we have chance to carve if it is an apparent 2D hole and
not observed as holes on other cameras. In Figure 8, the 2D
hole under the arm on CAM1 is not real 3D hole. So if the
corresponding region is carved on CAM2 by Carve(·) at
iteration Step t.2, the hole can be carved at iteration Step t.5.

4 Experiments

Figure 9 illustrates our camera arrangement. We use 13 XGA
cameras on the wall and 2 XGA cameras on the ceiling. All
cameras are calibrated beforehand. Figure 10 and 11 show
4 of 15 input and background images captured by cameras

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 10: A lady in Japanese traditional kimono

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 11: Background images

(a) T = 5 (b) T = 10

(c) T = 20 (d) T = 30

Figure 12: Naive background subtraction (CAM1)

respectively. We can observe that the object region contains
some darkly-textured regions, e.g., long black hair.

Figure 12 shows the results of naive background subtraction in
which each pixel p is categorized as silhouette if it satisfies

|Fg(p) − Bg(p)| >= T, (4)

where Fg(p) denotes the intensity of captured image at pixel p,
Bg(p) that of the background image, T a certain threshold. It is
clear that there is no magic threshold which produces accurate
silhouette without cast-shadows. On the other hand, Figure
13 shows the results given by pixel-wise shadow suppression
algorithm by Horprasert et al. [7]. White and gray regions in
this figure denote the object and shadow regions respectively.
The results are much better than those of the naive approach,
but some darkly-textured regions, e.g., long black hair regions

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 13: Pixel-wise method [7]

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 14: Proposed algorithm

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 15: Initial segmentations

in CAM2, are misclassified as shadow. It is hard to avoid this
kind of misclassification. This is because each pixel in both
cast-shadow and darkly-textured regions has no difference in
pixel-level.

Figure 14 shows the final result of our method. The processing
cost is approximately three days by Intel Pentium4 3GHz.
Compared with Figure 13, we can observe that our algorithm
does not mis-classify the regions which are misclassified as
shadow regions by the pixel-wise method.

To obtain these silhouettes, we first extract silhouettes
including cast-shadow regions by the algorithm described
in Section 3.1. Figure 15 shows the initial segmentation of
captured images. We can observe that they include some
segmentation errors, i.e., some segments include both object
and background regions. For example, in CAM4, the segment

(a) Iteration #57 (b) Iteration #58

(c) Iteration #61 (d) Iteration #68
Figure 16: Error correction at CAM4

(a) Iteration #57 (b) Iteration #58

(c) Iteration #61 (d) Iteration #68
Figure 17: Re-segmentation at CAM2

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 18: Result of object and cast-shadow extraction

around the left shoulder of the lady includes the background
regions as well. This mis-segmentation carves object region as
shown in Figure 16(a). Gray areas in this figure denote regions
which are carved in the previous iteration, but recovered
since the carving of them violates the intersection consistency
on other viewpoints. Figure 16 (b), (c), and (d) show how
the recovery of mis-carved regions is performed. Figure 16
shows re-segmentation process in this error correction. We
can observe that the region which corresponds to the left
shoulder of the lady is split into smaller segments. This
error detection and correction example indicates that the
multi-viewpoint silhouette extraction algorithm by Zeng and
Quan [16] will fail because it is straightforward and cannot
correct mis-segmentations as shown in Figure 16(a). Figure
18 shows the result of the algorithm described in Section 3.1.
Compared with ground truth silhouettes given by hand (Figure

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 19: Ground truth

Figure 20: Cast-shadow detection

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Figure 21: Results of proposed algorithm composed with the
input images

19), it is clear that the silhouettes include cast-shadow regions
around the object.

Then we use these silhouettes as the input of the algorithm
described in Section 3.2. Figure 20 shows how our algorithm
detects cast-shadow regions. Here, gray areas denote regions
classified as cast-shadow. We can observe that our algorithm
starts cast-shadow detection from the triangles on the floor, and
proceeds to its neighbors. Finally, we generate silhouettes by
projecting the surface of visual hull which is categorized as
object region as described in Section 3.2. Figure 21 shows
the final result composed with the input images. We can
observe that our algorithm can suppress cast-shadows as same
as the pixel-wise method shown in Figure 13, and can preserve
darkly-textured areas, e.g., long black hair, as object region.

Quantitative evaluation To evaluate our method
quantitatively, we categorize the pixels in a silhouette
into following four types:

T1 3 3 3 3 3 3
T2 150 200 250 150 200 250
T3 0.990 0.990 0.990 0.995 0.995 0.995

Recall 0.988 0.988 0.988 0.992 0.988 0.988
Precision 0.962 0.962 0.962 0.926 0.961 0.961

F 0.975 0.975 0.975 0.974 0.975 0.975
Table 1: F-measure of our method (Figure 14)

T 5 10 15 20 25 30
F 0.619 0.804 0.855 0.869 0.872 0.869

Table 2: F-measure of naive approach (Figure 12)

True-positive: S(p) = 1 and Ŝ(p) = 1,
True-negative: S(p) = 0 and Ŝ(p) = 0,
False-positive: S(p) = 1 and Ŝ(p) = 0,
False-negative: S(p) = 0 and Ŝ(p) = 1,

where S(p) = 1 and S(p) = 0 denote that a pixel p is estimated
as object and background respectively, and Ŝ(p) = 1 and
Ŝ(p) = 0 denote that p is a part of object and background
respectively in the ground truth image. Here, we use silhouettes
given by hand (Figure 19) as the ground truth. Using this
classification, we evaluate our method by F-measure defined
as follows:

Recall = NTP
NTP+NFN

, (5)

Precision = NTP
NTP+NFP

, (6)

F − measure = 2×Recall×Precision
Recall+Precision , (7)

where NTP, NFP, and NFN denote the number of true-
positive, false-positive, and false-negative pixels in the
estimated silhouette image respectively.

Table 1 and 2 show F-measures of our method (Figure 14) and
those of naive approach (Figure 12) for some thresholds. F-
measure of pixel-wise method in Figure 13 is 0.950, and that
of ours in Figure 18 which includes cast-shadow regions is
0.969. In Horprasert’s result (Figure 13), F-measure, recall,
and precision are 0.950, 0.953, and 0.946. In our result
which includes cast-shadow regions (Figure 18), F-measure,
recall and precision are 0.969, 0.989, and 0.949. These values
indicate that our algorithm outperforms not only the naive
background subtraction algorithm but also pixel-wise method.

5 Conclusion

In this paper, we proposed a novel algorithm for silhouette
extraction from multi-viewpoint images. Our algorithm
realizes 3D context-aware error detection, correction,
and shadow suppression. The quantitative experiments
demonstrate that our algorithm outperforms both naive
background subtraction and monocular pixel-wise shadow
suppression algorithms. The experiments also show that
our algorithm can correct errors which a conventional
multi-viewpoint algorithm cannot recover.

Since our algorithm is frame-wise and does not employ
temporal-consistency of silhouettes. So our future work will
concentrate on (1) extending for videos, and (2) integrating the
both 2D multi-viewpoint silhouette estimation and accurate

3D shape reconstruction based on proposed constraints
and texture-matching between viewpoints. Development of
efficient computation scheme including coarse-to-fine and
parallel-processing on GPU is also left for future work since
our algorithm is much slower than pixel-wise algorithms due
to the iteration.

Acknowledgements

This research was supported by the Ministry of Education,
Culture, Sports, Science and Technology of Japan under the
Leading Project: “Development of High Fidelity Digitization
Software for Large-Scale and Intangible Cultural Assets”, and
the Ministry of Internal Affairs and Communications of Japan
under the SCOPE-C Project 062307002.

References

[1] K. M. Cheung, S. Baker, and T. Kanade. Visual
hull alignment and refinement across time: A 3d
reconstruction algorithm combining shape-from-
silhouette with stereo. In Proc. of CVPR, pages 375–382,
June 2003.

[2] G. Cross and A. Zisserman. Surface reconstruction
from multiple views using apparent contours and surface
texture. In Proc. of NATO Advanced Research Workshop
on Confluence of Computer Vision and Computer
Graphics, pages 25–47, 2000.

[3] P. Fua and Y. G. Leclerc. Using 3-dimensional meshes to
combine image-based and geometry-based constraints. In
Proc. of ECCV, pages 281–291, 1994.

[4] B. Goldlüecke and M. Magnor. Joint 3d-reconstruction
and background separation in multiple views using graph
cuts. In Proc. of CVPR, pages 683–688, 2003.

[5] J. Y. Guillemaut, A. Hilton, J. Starck, J. Kilner, and
O. Grau. A bayesian framework for simultaneous matting
and 3d reconstruction. In Proc. of 3DIM, pages 167–176,
2007.

[6] H. Han, Z. Wang, J. Liu, Z. Li, B. Li, and Z. Han.
Adaptive background modeling with shadow suppression.
In Proc. of Intelligent Transportation Systems, pages
720–724, 2003.

[7] T. Horprasert, D. Harwood, and L. S. Davis. A statistical
approach for real-time robust background subtraction and
shadow detection. In ICCV Frame-Rate WS, 1999.

[8] J. Isidoro and S. Sclaroff. Stochastic mesh-based
multiview reconstruction. In Proc. of 3DPVT, pages 568–
577, July 2002.

[9] Y. Ivanov, A. Bobick, and J. Liu. Fast lighting
independent background subtraction. IJCV, 37(2):199–
207, 2000.

[10] Y. Kenmochi, K. Kotani, and A. Imiya. Marching cubes
method with connectivity. In Proc. of ICIP, pages 361–
365, Kobe, Japan, oct 1999.

[11] A. Laurentini. How far 3d shapes can be understood from
2d silhouettes. PAMI, 17(2):188–195, 1995.

[12] T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara.
Real-time 3d shape reconstruction, dynamic 3d mesh
deformation and high fidelity visualization for 3d video.
CVIU, 96:393–434, December 2004.

[13] S. N. Sinha and M. Pollefeys. Multi-view reconstruction
using photo-consistency and exact silhouette constraints:

A maximum-flow formulation. In Proc. of ICCV, pages
349–356, 2005.

[14] J. Starck, A. Hilton, and G. Miller. Volumetric stereo
with silhouette and feature constraints. In Proc. of BMVC,
2006.

[15] G. Vogiatzis, P. H. S. Torr, and R. Cipolla. Multi-view
stereo via volumetric graph-cuts. In Proc. of CVPR, pages
391–398, 2005.

[16] G. Zeng and L. Quan. Silhouette extraction from multiple
images of an unknown background. In Proc. of ACCV,
pages 628–633, 2004.

