
Simultaneous super-resolution and 3D video using graph-cuts

Tony Tung Shohei Nobuhara Takashi Matsuyama
Graduate School of Informatics, Kyoto University, Japan

{tung,nob,tm}@vision.kuee.kyoto-u.ac.jp

Abstract

This paper presents a new method to increase the quality
of 3D video, a new media developed to represent 3D objects
in motion. This representation is obtained from multi-view
reconstruction techniques that require images recorded si-
multaneously by several video cameras. All cameras are
calibrated and placed around a dedicated studio to fully
surround the models. The limited quality and quantity of
cameras may produce inaccurate 3D model reconstruction
with low quality texture. To overcome this issue, first we
propose super-resolution (SR) techniques for 3D video: SR
on multi-view images and SR on single-view video frames.
Second, we propose to combine both super-resolution and
dynamic 3D shape reconstruction problems into a unique
Markov Random Field (MRF) energy formulation. The
MRF minimization is performed using graph-cuts. Thus,
we jointly compute the optimal solution for super-resolved
texture and 3D shape model reconstruction. Moreover, we
propose a coarse-to-fine strategy to iteratively produce 3D
video with increasing quality. Our experiments show the
accuracy and robustness of the proposed technique on chal-
lenging 3D video sequences.

1. Introduction
3D video is a new media developed these last years to

represent 3D objects in motion [13, 17]. This technique
captures dynamic events in the real world. It records time
varying 3D models with surface properties such as color and
texture. Its applications cover wide varieties of personal and
social human activities: entertainment, education, sports,
medicine, culture, heritage preservation and so on.

Models are recorded by several video cameras in a ded-
icated studio. Every 3D video frame contains one or sev-
eral 3D textured meshes, each frame being acquired at video
rate. Dynamic 3D model reconstructions are performed us-
ing multi-view stereo techniques (one model is computed
for each frame). Therefore input image quality is a cru-
cial factor to obtain high-quality (detailed) 3D video. For
static 3D model reconstruction, several high-quality meth-

Figure 1. Super-resolved 3D video. Our super-resolution methods
increase the quality of 3D video. Texture resolution is higher, and
mesh surface gains geometric details. (a) shows a current frame of
3D video. (b) shows our super-resolution 3D video reconstruction.

ods exist [22] where the image quantity infers directly on
the quality of reconstruction. In 3D video, models are in
motion. And due to the limited number of cameras, details
on object surface cannot always be recovered and mapped
textures may lack of precision as well. A current frame-
work uses a deformable mesh model to estimate 3D shape
from multi-view videos [17]. The deformation process of
the mesh model is heterogeneous and minimizes an energy.
Each vertex of the mesh changes its position according to
its photometric property (i.e. if it has prominent texture or
not), and physical property (i.e. if it is on a rigid part of
the object or not). This heterogeneous deformation model
enables to reconstruct 3D models with a single and unified
computational framework. To increase the 3D video qual-
ity, we propose super-resolution (SR) techniques dedicated
to multi-view videos. In particular, our approach focuses
on both SR on multi-view images and SR on single-view
video frames. Problems are formalized as Markov Ran-
dom Field (MRF) energy models with maximum a pos-
teriori (MAP) estimation. We propose to take advantage
of the graph-cuts (min-cut/max-flow theory) to minimize
MRF energies [5]. Moreover we combine SR reconstruc-
tion with 3D object shape optimization, as it is well known
that graph-cuts suit very well to multi-view stereo recon-
struction [14, 30]. Therefore the global energy minimiza-
tion computes simultaneously the optimal 3D model shape
and texture (cf. Figure 1). Moreover we propose a strat-
egy to obtain iteratively coarse-to-fine 3D video reconstruc-
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tion. Our experiments show the accuracy and robustness of
the proposed technique on challenging 3D video sequences.
For examples, videos of Japanese traditional dancers were
used. Gestures are sharp and clothing are very fine. Thus a
reliable storage media is necessary.

The rest of the paper is organized as follows. The
next section discusses work related to the techniques pre-
sented in this paper (3D video, super-resolution and multi-
view stereo using graph-cuts). Section 3 presents super-
resolution on multi-view images acquired by video cam-
eras. Section 4 presents super-resolution on single-view
video frames. Section 5 describes the coarse-to-fine recon-
struction strategy and the compound energy to minimize
to reconstruct simultaneously high-quality texture and 3D
shape of 3D video. Section 6 presents experimental results.
Section 7 concludes with a discussion on our contributions.

2. Related work
Since these last years computer hardware devices be-

came powerful enough to handle heavy calculations. Hence,
nowadays an increasing number of research groups are in-
volved in dynamic 3D multi-view stereo reconstruction [13,
9, 17, 12, 25]. The main motivation is to model a realistic
virtual world. The 3D video sequences shown in this pa-
per were acquired in real-time using a cluster of 15 node
PCs and 15 cameras. The reconstruction method relies on a
shape-from-silhouette approach to produce rough 3D mesh
model sequences. Then 3D mesh surfaces are optimized
using a cost function to minimize [17, 19]. As well, tex-
ture maps are computed for each video frame. Numerous
multi-view stereo reconstruction algorithms can be found
in the literature (e.g. see [22] for a recent survey). To obtain
very accurate 3D models from stereo techniques, it is well
known that lots of high resolution images are required. In
the 3D video framework, we cannot afford to set several ten
high-resolution cameras or so in a studio. Thus having 15
video cameras means 15 images for each 3D model recon-
struction. As shown in Figure 2, a limited number of images
makes difficult to recover all 3D shape details. Camera cal-
ibration errors are not well compensated with few cameras
and pixel photo-consistency is weak. To guarantee good 3D
video reconstruction, a hardware-based solution is to use
HD video cameras as in [25].

The solution we propose is to increase the quality of
3D video reconstruction by applying super-resolution al-
gorithms dedicated to 3D video. Super-resolution (SR) is
a technique to recover detailed information from degraded
data. Therefore one can reconstruct high resolution (HR)
images from several low resolution (LR) images. It has been
extensively used in numerous applications such as photog-
raphy enlargement, video surveillance, medical imaging,
satellite imaging, etc. Lots of previous work can be found
in the literature (e.g. see [31] and [4, 7, 20] for reviews). To

Figure 2. 3D video reconstruction using shape-from-silhouette
and deformable 3D mesh model. (Left) shows an original video
frame. (Middle) shows an initial mesh (the visual hull) obtained
by shape-from-silhouette technique. (Right) shows a mesh after
the deformation step. Due to lack of photo-consistency, high fre-
quency regions are not well reconstructed (e.g. the head).

obtain an HR image from multiple LR images, LR images
have to provide different views of the same scene with dif-
ferent subpixel shifts. Usually, the methods use a model of
the image formation process to relate N LR images yk to
an HR image x [8]:

yk = DBkWkx + εk, 1 ≤ k ≤ N. (1)

This model takes into account optical distortion (warp ma-
trix Wk), the camera point spread function (blur matrix
Bk), aliasing (sub-sampling matrix D), and additive noise
εk. It is an ill-posed inverse problem which does not have
straightforward solution and usually requires some addi-
tional regularization. However various approaches have
been proposed [34, 1, 11, 23]. In general, SR image recon-
struction methods consist in three steps: 1) registration of
LR images or motion estimation, 2) interpolation on an HR
grid, and 3) restoration for blur and noise removal. Besides
if there is sufficient number of LR images, regularization
methods (e.g. stochastic approaches) can be used to stabi-
lize the inversion of the ill-posed problem. In [21] SR was
applied on still images for 3D reconstruction of a book page
in a hemispheric configuration with 51 cameras. In our 3D
video framework, we address both SR on multi-view im-
ages and SR on single-view video frames. As a matter of
fact, increasing the quality of images will produce more ac-
curate 3D shapes and better textures. Our proposed SR ap-
proach uses Markov Random Field energy formulations that
suit dynamic 3D shape reconstruction.

As presented in [26], several problems in vision can be
formulated as a Markov Random Field (MRF) energy, and
solved using minimization techniques. Energy minimiza-
tion is a difficult task as it usually requires lots of computa-
tional time to eventually find local or global minima. Classi-
cal techniques such as simulated annealing are very slow in
practice. Fortunately, graph-cut approaches have been de-
veloped in the last few years [6]. The idea is to build a ded-
icated graph for the energy function to be minimized; then
the minimum cut on the graph minimizes the energy as well



Figure 3. Different camera views of models. Each camera produces a video at resolution 1024*768 pixels. High fidelity media is necessary
to represent fine details of Japanese traditional clothing. Note that less than one third of the images contains relevant information.

(either globally or locally). Using max flow algorithms, the
minimum cut can be computed very efficiently. In general
the found solution has interesting theoretical quality guar-
antee. These methods have been successfully used for a
large variety of applications, such as 3D multi-view recon-
struction [14, 30] or even super-resolution on images with
synthetic noise and small displacements [18].

Therefore we propose to combine both super-resolution
and dynamic 3D shape reconstruction problems as an orig-
inal MRF energy formalization which minimization is per-
formed using graph-cuts [15]. We compute simultaneously
the optimal solution for super-resolved texture and dynamic
3D shape model reconstruction. The result is a 3D video
with increased quality.

3. Super-resolution on multi-view images
In this section, we present super-resolution on a set of

multi-view images acquired by calibrated video cameras.
Each camera produces video frames of size s = 1024 ∗
768 pixels (cf. Figure 3). Colors are encoded on 24 bits
(RGB channels). Obviously interpolation methods could be
applied to obtain SR images. Nevertheless they may lead
to the loss of details in high frequency regions. Hence a
regularization technique using MAP-MRF formalism was
preferred.

The proposed super-resolution approach consists on: 1)
magnifying every image from low resolution (LR) to high
resolution (HR), and accurate alignments of LR images onto
HR grids to gain subpixel information in each HR image;
2) HR image regularization using MRF energy formulation
and minimization with graph-cuts.

3.1. Multi-view registration

Assuming N images taken by N calibrated cameras, and
a magnifying factor m (e.g. m = 2), the image alignment
algorithm is the following:

1. Compute a visual hull of the model using silhouette
projection intersections as in [17].

2. Consider each image plane of the LR images Li (i ∈

[1, N ]) with the magnification factor m. Thus we ob-
tain HR grids Hi of size m ∗m ∗ s pixels.

3. Using the prior knowledge on the model 3D shape
(i.e. the visual hull from step 1) and Z-buffer com-
putations, project every visible pixel from LR images
Lj (j ∈ [1, N ] , j 6= i) onto Hi grids. Thus we obtain
HR images of non-occluded regions with subpixel pre-
cision (cf. Figure 4). Artifacts due to calibration errors
are compensated using consistency criterion on pixel
colors [3].

4. For every pixel p of the HR grid, if no visible pixels
from any LR images were projected on p, then set the
value of p as the interpolation of neighborhood values
(e.g. using a 3*3 mask).

Finally we obtain a set of N HR images m ∗ m times
bigger than the LR images, including more accurate infor-
mation. Nevertheless, a regularization step is necessary to
overcome remaining artifacts and give smooth solution.

Figure 4. Projection of all visible pixels from low resolution
images on a high resolution (HR) grid. (Left) Original frame.
(Right) Blank HR grid with subpixel information. Inconsistent
pixels were filtered.

3.2. MRF energy formulation

In our framework, LR images are acquired by calibrated
video cameras. Blur effects are limited and do not necessary
need to be simulated as in [18] (where SR is applied on im-
ages with synthetic noise and small displacements). More-
over we compute optimization with respect to observed HR
grids as previously defined, instead of considering every



projected pixel from LR images. The MRF energy is for-
mulated to enable discontinuity preservation and image reg-
ularization using graph-cuts.

Let P =
⋃N

i=1 Pi = {p} be the set of pixels of HR
images Hi, and L = {lp} be a discrete set of labels corre-
sponding to the possible pixel values of P . HR images are
optimized using MRF energy formulation:

E(f) = Ed(f) + Es(f). (2)

E(f) is the energy of the labeling f : P → L. Ed(f) is
the data energy measuring the disagreement between f and
{p}:

Ed(f) =
∑
p∈P

Dp(lp) =
∑
p∈P

(lp − ip)2, (3)

where Dp(lp) stands for the cost of a label lp on pixel p, ip
being the intensity of p. Es(f) is the neighbor smoothness
cost:

Es(f) =
∑

{p,q}∈N

V (p, q) =
∑

{p,q}∈N

λ ·min(K, |lp − lq|), (4)

where N is the set of neighborhood configurations in a 4-
connected neighborhood system, and V (p, q) is the non-
truncated linear cost for constant λ = 2 and K = 255.

Then E(f) is minimized using graph-cuts with an expan-
sion algorithm as described in [6]. Note that one energy is
formulated for each R, G, B channel. An example of results
is presented in Figure 5.

Figure 5. Multi-view image super-resolution reconstruction. (a)
is the original frame: obviously aliasing effects are visible. (b)
has been obtained with bicubic interpolation of the LR image: as
expected, the result is smooth and we tend to lose high frequencies.
(c) is the super-resolved image: discontinuities are well preserved
and video artifacts removed.

4. Super-resolution on single-view video
frames

In this section, we consider each video camera indepen-
dently. Consecutive frames from a single-view video se-
quence contain a lot of redundancies. Thus it is possible

to increase the quality of each camera video sequence. As
in Section 3, the super-resolution reconstruction approach
consists on LR image registration to gain subpixel details
in overlapping regions, and optimization of HD grid using
graph-cuts. Indeed, the quality of super-resolved images
highly relies on the correctness of image alignments be-
tween consecutive frames (e.g. see [33, 32] for surveys
on image registration). In [2], a piecewise image registra-
tion method was proposed for large motions. It relies on a
multi-label graph-cut optimization to estimate dense motion
field between two images. Here, we address the problem
of single-view multiple frame registrations with no neces-
sary large motions. We employ robust feature detection and
matching to accurately estimate motion between the image
pairs. An efficient process is used to detect and discard in-
correct matchings which may degrade the output quality. As
similar regions of interest (ROI) are detected in two consec-
utive frames Lt and Lt+1, we propose to use a local map-
ping model [10] to transform the ROI of Lt onto Lt+1 as a
warped texture. The ROI are formed by the pixels included
in the triangulated area of the detected features.

4.1. Feature matching

Automatic image alignments can be performed either by
pixel-based alignments (e.g. optical flow estimation [24]),
or by feature-based alignments (motion estimation). In our
framework, we are interested by tracking regions of inter-
est in consecutive frames (regions on the model). The Scale
Invariant Feature Transforms (SIFT) detector by [16] is ef-
ficient and reliable to our purpose. It is invariant to rotation
and scale, robust to change in lighting, and encodes local
area brightness patterns. We use the SIFT feature matching
method proposed by [16] as well (cf. Figure 6). A post-
processing step based on the SIFT feature vectors removes
the outliers from the motion field.

Figure 6. SIFT feature detection in consecutive frames. The
kimono has a lot of details. Close to 1400 SIFT features were
found on each of these images.

4.2. Texture warping and mapping

We propose to create a mesh based on the detected fea-
tures. ROI is then the mesh texture. Considering two con-
secutive frames Lt and Lt+1, Delaunay triangulation is per-
formed on Lt and projected onto the detected features in



Figure 7. Local mapping model. Similar region of interests (ROI)
are tracked along the sequence. Here, triangulations of ROI are
similar in consecutive frames. Then textures are extracted and
mapped onto an HD grid using a piecewise cubic mapping.

Lt+1. If the features are well detected in both frames Lt and
Lt+1 and matched, then meshes have same topology in each
frame. Obviously, unfiltered outliers from the previous step
would return wrong triangulation in Lt+1. Nevertheless in
consecutive images of a 3D video sequence similar features
and outliers are well detected. Finally, we extract the tex-
ture from the mesh of Lt and apply it onto the mesh of Lt+1

using a piecewise cubic mapping function [10]. Indeed, tex-
tures of similar ROI are wrapped onto an HR grid. If the
ROI area in the image Lt were bigger than the ROI area in
the image Lt+1, then the mapping of the texture from Lt to
Lt+1 would give more details to Lt+1. This would lead to
an HR image with subpixel informations (cf. Figure 7).

The texture mapping is applied on every pair of con-
secutive frames having the similar ROI. ROI are tracked
using the feature matching process described in the previ-
ous subsection. Afterward, as all similar ROI are extracted,
textures are mapped onto ROI HR grids. Pixels that are
not color-consistent are filtered using a dissimilarity mea-
sure [3]. Then we obtain compound HR images having
subpixel details from LR frames. Finally, we use an MRF
energy formulation as in Section 3 to regularize HR images
and reconstruct SR images. Minimization is performed us-
ing graph-cuts (cf. Figure 8).

Figure 8. Super-resolution reconstruction of single-view video
sequence. (Left) shows an original frame. (Middle) shows the
projection of the relevant pixels from 10 consecutive frames onto
a blank HR grid. (Right) shows a detail of the super-resolved re-
constructed image.

5. Simultaneous super-resolution and 3D video
We propose a coarse-to-fine approach to iteratively re-

construct increasing quality 3D video. As presented in
previous sections, our super-resolution and 3D video ap-
proaches use MRF energy formalism. Therefore we pro-
pose to combine both problems in one unique energy. The
minimization of this new global energy returns simultane-
ously the optimal 3D video reconstruction with the optimal
texture. Fortunately this can be achieved efficiently using
graph-cuts [6, 15].

5.1. Coarse-to-fine strategy

Our coarse-to-fine scheme is illustrated by Figure 9. It
produces a 3D video which quality increases iteratively as
videos are acquired. We assume video frames are acquired
simultaneously at every iterative step at time ti, i ≥ 0.
Starting at t0, SR reconstruction is applied on the set of
multi-view LR images (cf. Section 3) acquired at each it-
eration ti. Meanwhile SR is applied on every single-view
video frame (cf. Section 4) after each iteration. The SR
reconstruction involves all previously reconstructed super-
resolved frames at t < ti, and the set of super-resolved im-
ages reconstructed from the set of LR images at ti. At each
iteration step ti, SR reconstruction is computed simultane-
ously with 3D model shape using the MRF energy mini-
mization with graph-cuts. Thus a super-resolved 3D video
frame can be reconstructed at each iterative step.

Figure 9. Iterative coarse-to-fine strategy. a) Super-resolution
on multi-view images at time t = ti: image alignments and reg-
ularization. b) Super-resolution on every single-view video frame
for t ≤ ti: feature detection, region of interest tracking, texture
projection and regularization. c) Simultaneous super-resolution
and 3D video reconstruction using a combination of MRF energy
formulation. Minimization of the compound energy is performed
using graph-cuts.



5.2. Simultaneous energy minimization

Assuming g is a 3D position labeling, and f is the color
labeling as described in Section 3.2, the global compound
energy Ẽ(g) formulation for simultaneous SR and 3D shape
reconstruction using graph-cuts can be written as following:

Ẽ(g) = E(f(g), g), (5)
f(g) = arg min

f∈P
E(f, g), (6)

E(f, g) = ESR(f) + E3D(g), (7)

where ESR(f) is the super-resolution energy of labeling f
presented in Section 3.2, and E3D(g) is the energy of label-
ing g for multi-video 3D reconstruction. We have revisited
the energy E3D(g) with silhouette constraints from [17] to
handle volumetric graph-cut framework in an MRF formal-
ism as [25, 30]. To impose silhouette constraints, contour
generators (CGs) are first explicitly estimated by dynamic
programming. Then estimated CGs are used as fixed voxels
in the graph structure. Our approach is somehow similar
to the one presented in [27], but we use dynamic program-
ming to estimate the optimal CGs considering continuity
(smoothness) between estimated points instead of comput-
ing each point individually.

Suppose we have N cameras and a binary silhouette im-
age Si for each camera Ci (i ∈ [1, N ]). We assume the out-
lines of Si consist on closed curves with ring topology. We
denote the j-th outline by si,j , and the x-th pixel of si,j by
si,j(x) (x ∈

[
1, Nsi,j

]
) where Nsi,j is the number of pix-

els of si,j . Every 2D point of silhouette outlines si,j(x) has
one or more corresponding 3D points {Pi,j(x)} lying on
the object surface. We can expect that each has high photo-
consistency with camera image pixels. The object visual
hull gives the possible 3D positions of CGs for each si,j(x).
We formalize the contour generator estimation problem as
an energy minimization problem of a function Ecg defined
as follows:
Ecg =

∑
i ESi

, ESi
=

∑
j Esi,j

, Esi,j
=

∑
x E(x) , and∑

x

E(x) =
∑

x

Ep(px) + λ
∑

x

Ed(px − px+1), (8)

where px denotes the selected 3D point from Pi,j(x) corre-
sponding to si,j(x) , Ep(px) is the photo-consistency term
at px, and Ed(px − px+1) is the distance between px and
px+1 as a smoothness term. We use the dissimilarity func-
tion of [3]. Let Cpx

denote the set of cameras which can ob-
serve a 3D point px on V . We define our photo-consistency
function as:

Ep(px) =
∑

ci,cj∈Cpx

exp(ei.ej − 1) · d(pci
x , pcj

x ), (9)

where ci and cj denote a pair of cameras in Cpx
, ei and

ej are the viewing direction of ci and cj respectively,

exp(ei · ej − 1) is a scalar weight based on the camera di-
rections, pci

x and p
cj
x denote 2D projections of px at ci and

cj respectively. The function d(pci
x , p

cj
x ) is the pixel-based

dissimilarity function defined by [3]. Since we assumed that
si,j is a closed curve and parameterized by a single variable
x, the smoothness term of x depends only on its neighbor
x + 1. Hence this minimization problem can be solved effi-
ciently by dynamic programming whereas a min-cut prob-
lem framework would be computationally expensive. We
denote Vcg as the optimal set {px} minimizing Ecg .

As proposed in [30], we use the visual hull V as the
initial estimation of the object shape, and use graph-cuts
to compute the optimal surface S∗ minimizing the photo-
consistency on S∗ under contour generator constraints. We
define the graph G so that the min-cut returns the object
shape on its source side. Each voxel v ∈ V is associated to
a node of G connected by edges in a 6-neighborhood sys-
tem. The cost of an edge between two voxels vi and vj is
Wij = Ep(

pi+pj

2 ), where pi and pj are the 3D positions of
vi and vj respectively. We assume that the visibility of a
point p ∈ V is approximated by the visibility of its closest
voxel lying on the surface of V . Each voxel v ∈ V is also
connected to the source with a constant ballooning cost Wb

and to the sink with no cost. Thus, in addition to the graph
structure, we set the cost to the source to infinite for every
voxel vcg ∈ Vcg so that the minimum cut includes voxels of
Vcg (cf. Figure 5.2).

Figure 10. Graph structure for volumetric graph-cut mini-
mization. Each voxel is connected to its neighbors with a weight
Wij , and to the source with a weight Wb. Each vcg represents a
silhouette constraint. It is connected to the source with an infinite
weight. All voxels are connected to the sink with a null weigth.

6. Results
The studio has the following configuration: diameter is

6 m, height is 2.5 m, and the size of the area where an ob-
ject can be reconstructed without defect is approximately
3*3*2 m3 in the center of the studio. Models are captured
using a PC cluster system composed of 15 PCs and one mas-
ter PC. Every PC has one fixed camera, and cameras are
connected to an external pulse generator for triggering. PC
specifications are Pentium III 1 GHz * 2, RAM 1 GB. Cam-
eras are Sony XCD-X710CR, XGA. This system delivers
synchronized multi-viewpoint images at 25 fps.



Figure 11. Super-resolution of 3D video. Using our 3D video
super-resolution technique, surface and texture of 3D models have
better quality and look more realistic. (a) shows a shaded mesh and
textured meshes obtained by 3D video reconstruction as in [17],
and (b) shows our results with super-resolved images. Details on
the kimono are better rendered.

For experimental tests we have worked with video se-
quences of Japanese dance performed by maikos (appren-
tice geishas). The elegant appearance of maiko includes
colorful clothing, hairstyle, accessories, and make-up. In
particular a maiko wears a kimono (traditional Japanese
robe style) with an obi (kimono waist band). Obtaining a
nice 3D model reconstruction is therefore challenging as
cloths are large, non-rigid and contain lots of details to re-
cover. In fact, the video cameras used to capture the rela-
tively fast dances have very short shutter speed (1 ms for
this sequence). Hence the image quality is quite low com-
pared to images of a static object captured by still cameras
or movie cameras with long shutter. Moreover, acquiring
a static object with a single camera allows to get homoge-
neous image properties from every viewpoints such as gain,
color-balance, noise-level, etc. Since we deal with dynamic
objects we have to cope with different cameras at different
viewpoints, with different properties.

Although our 3D video super-resolution reconstruction
requires several steps, the whole pipeline is fully autom-
atized. Super-resolution calculations (cf. Section 3 and
4) were performed on a laptop with Pentium M processor
1.60 GHz and RAM 512 MB. The most expensive step is
the SR energy minimization. It is performed for each color
channel with 256 labels. One SR computation on HR grid
channel requires 4 min. The energy minimization method

has been tested against graph-cuts with alpha-expansion
and swap algorithm, iterated conditional modes (ICM), and
max-product loopy belief propagation (LBP) [6]. For our
application, graph-cuts with alpha-expansion algorithm of-
fers the best trade-off between speed and reconstruction
quality and then was chosen.

The current implementation takes 5 min to generate a
final 3D mesh from multi-viewpoint foreground and sil-
houette images (Core2 processor 2.4 GHz). This process
includes: 1) visual hull reconstruction, 2) contour genera-
tor estimation by DP, 3) photo-consistency computation, 4)
optimal surface extraction by graph-cut, and 5) per-vertex
coloring. The coarse-to-fine strategy allows to increase the
quality of 3D video by reconstructing SR images at each
iteration step (cf. Section 5.1). In fact, due to hardware
limitation it is difficult to increase the size of HR grids at
every iteration as magnifying four times initial LR images
is already high memory consuming. However the coarse-
to-fine scheme can be used to combine the both presented
SR methods and produce SR 3D video without necessary
increasing the HR grid size at each iteration step. Accord-
ing to our experiments, even a magnification factor of 2 is
enough to produce fine reconstructions. Figures 1 and 11 il-
lustrate results of our proposed SR 3D video technique: SR
allows to recover much details than current 3D video recon-
struction method [17]. Discontinuities are better preserved.
In Figure 1, we can observe that the head shape is better re-
covered with SR. Moreover, the use of SR images has well
improved the texture quality. The clothing is far better ren-
dered and more colorful, as video noises were handled (reg-
ularized). We have obtained reconstructions with voxel size
up to 1 mm. To appreciate the sharpness of our results, SR
models on Figure 11 can be compared to images on Figure 3
as well.

7. Conclusion
3D video is a new media developed these last years to

represent 3D objects in motion[13, 17]. We present an orig-
inal method to increase the quality of 3D video. We propose
super-resolution methods dedicated to 3D video: on multi-
view images and single-view video sequences. In particu-
lar, we use a practical MRF energy formulation that can be
efficiently minimized with graph-cuts. In addition, a com-
pound energy formulation combines super-resolution re-
construction and dynamic 3D shape reconstruction. Hence
the energy minimization simultaneously optimizes super-
resolution of model texture and 3D shape. Moreover a
coarse-to-fine strategy is proposed to iteratively increase the
3D video quality at each step of 3D model reconstruction.
Our experiments show the effectiveness of the approach.
Hence the quality of 3D videos acquired with low resolu-
tion videos can then be enhanced.

For further work, to eventually limit the storage cost of



super-resolved texture maps, our approach may be com-
bined to a 3D video compression technique as recently pre-
sented in [29]. It takes advantage of the augmented mul-
tiresolution Reeb graph[28] properties to store the relevant
information of 3D models such as shape, topology and tex-
ture. In particular, only one texture map is encoded for a
whole 3D video sequence. Therefore, we could tune our
coarse-to-fine strategy to update iteratively the texture map,
and finally obtained a compact super-resolved 3D video.
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