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Abstract—Advanced energy management systems are increas-
ingly gaining importance. These systems will allow the further
introduction of Photovoltaic (PV) power generation, but for
them to be really effective, sub-minute (1-60 sec.) PV generation
prediction is required. In this context we propose a sub-minute
PV prediction system based on the analysis of sky images. This
is done by analyzing cloud movement, and thus the system does
not rely on i) historical PV data, ii) dynamic model of the local
weather, nor iii) location dependent information. The proposed
system works as follows: from multiple image exposures, high
dynamic range images are obtained (one per second), cloud
movement is estimated, sky images are predicted, and finally
PV generation is estimated using the predicted sky images.
The proposed system achieves low error under various weather
conditions.

Index Terms—photovoltaic, prediction, sky image, sub-minute,
high dynamic range, cloud movement.

I. INTRODUCTION

In recent years, systems that greatly increase the energy
management ability of each demand have been proposed.
These systems enable the management of generation and
consumption, e.g. allowing each end-point of the system to
set power consumption targets, to follow fluctuating power
sources, and to coordinate consumption and generation with
other users (see e.g. [1] [2] [3]).

Another trend has been the rapid introduction of uncontrol-
lable renewables (including PV) due to i) the lower cost of
renewables and batteries, and ii) government policies encour-
aging their installation (e.g. the Fit-In Tariff (FIT) scheme).
As a consequence, more consumers have installed their own
generation, storage and energy management systems.

However, restrictions to the further installation of uncon-
trollable renewables due to the limited controllable generation
capacity has been observed in some regions (e.g. in Kyushu,
Japan). Moreover, the time-limit of FIT programs [4], may
not allow users to continue injecting energy in to the grid,
e.g. the FIT program for residential users in Japan lasts 10
years, and it is not clear what these users will do after the
FIT program finishes.

To increase the introduction of PV, advanced energy man-
agement system are key, and such systems would greatly
benefit by having a local sub-minute PV prediction. Thus,
we address the problem of such sub-minute prediction PV.

The power generation of a PV system depends mainly
on a single environmental factor: the relative position of
the sun, the clouds, and the PV station. Thus, by analyzing
the movement and position of the clouds with respect to
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Fig. 1. Proposed Approach. To predict the PV generation,
first future sky images are predicted, and later the PV power
associated to the predicted sky image is estimated. Sky image
prediction is done by analyzing cloud movement, thus his
system does not require a historical data, nor dynamical model
(of PV generation) nor geo-location information.

TABLE I
OVERVIEW OF APPROACHES FOR PV PREDICTION [5][6].

Approach (Sensor) Time Horizon Resolution RMSE
Weather model [7] Hour-ahead 1 hour 20-60%
Satellite imaging [8] Hour-ahead 1 minute 20%
Dynamic PV model [9], [10] Intra-hour 15 minute 20%
Sky image (cloud mov.) Intra-minute 1 second (proposed)

the PV cell and the sun, it should possible to predict the
PV generation at any location. In this line, we address the
challenge of sub-minute PV prediction (time horizon of 1 -
60 sec.). In particular we investigate how to predict PV power
generation using a camera facing up to the sky (see Fig. 1).

II. RELATED WORK

Various approaches have been proposed to predict PV
generation [5][6]. These are designed to work at various time
scales, time resolutions, and spatial resolutions, with most
methods performing a day-ahead prediction for every 30-
minute. Most methods can be grouped in 3 categories (see
Table 1): weather-based models, satellite imaging systems,
and dynamical models (learned from historical PV data).



Numerical weather based models have low time & spatial
resolution and are based on physical models. Satellite image
methods directly use cloud structure, thus they do not rely
on historical data or dynamical models, achieving a higher
accuracy and working at smaller time scales (intra-hour PV
prediction), but they have low spatial resolution. Satellite
imaging has been used for intra-hour PV prediction based
on the estimation of cloud structure and motion.

An alternative is to use PV measurements together with
models learned from historical data (e.g. dynamical models
auto-regressive (AR) models) [10][9]. In general these meth-
ods provide intra-hour (a 5 minute-ahead) PV prediction, but
they are trained for each location using dynamical models
learned using historical data. Given that measuring PV gen-
eration at a single location may not be enough, the use of
distributed PV measurements has been recently proposed [8]
[9]. Distributed PV measurements improve the PV prediction
when compared to PV measurements at a single location,
achieving intra-hour prediction, however these methods also
require a location-specific model learned from historical data.

III. SUB-MINUTE SKY IMAGE AND PV PREDICTION

To prediction PV generation we propose to analyze and
predict cloud movement from sky images and to estimate
PV generation from these predicted images. An advantage
of this approach is that it does not require historical data,
dynamical model, nor geo-location. While the analysis of
static sky images has been proposed [11], to the best of our
knowledge, cloud movement for sub-minute PV prediction
has not. The proposed system consists of four main parts:
• PV generation measurement,
• High Dynamic Range (HDR) sky image capture,
• Sky image analysis and prediction, and
• Image based PV power estimation.

A. PV Generation System and Measurement

PV generation data is captured at 1-second resolution at
a PV station. The PV cells are parallel to the ground and
the station has generation capacity of 2500W. The generated
power is sensed using a current transformer (CT) sensor and
each sample is time-stamped with a NTP synchronized clock.
The station is located 100mt from the image capture system.

B. Sky Image Capture System

1) Capture System and High Dynamic Range Images: The
system captures multiple image exposures at a high speed
(8 fps) that are combined to obtained the HDR image. The
capture program is implemented in C++ and uses multi-thread
programming to improve throughput and reduce I/O blocking.
The images are cropped in camera (1280x1280 pixels) and
captured using a bracketing mode that allows to iterate over
4 shutter speeds. Every half second 4 images are captured
(with exposure times in {1, 8, 16, 24} × 11ms, see Fig. 3).

In order to reduce cloud movement within a bracket, out
of the eight frames captured every second, the first 4 frames
are kept. These 4 frames are stored in TIFF format and then

(a) System diagram

(b) Camera system

Fig. 2. System diagram and camera system. The system
consists basically of three main parts: PV data capture, Sky
image capture and HDR image formation, and Sky image
analysis (image prediction and pv estimation). The camera
capture system consist of a CMOS Camera, a Fish-eye lens,
and a housing to protect the camera (not shown in the image).

encoded as MP4 videos. These videos are later decoded and
the exposures and combined to obtain the HDR image [12].

The system’s hardware consist of:

• a CM3-U3-31S4C Chameleon3 PointGrey Camera (Sony
IMX265, 1/1.8”, Color, 2048x1536 (3.2MP), USB3),

• a Spacecom TV1634M, F1.4, 180 Fish-eye lens, and
• an Intel i7, 8 cores, 4 GHz, 32GB RAM PC (Ubuntu).

2) Lens calibration: We use a calibrated model of the
camera-lens system that gives us the direction of each light
ray being collected by each pixel. The lens is modeled using
a 4th degree polynomial [13]:

f(ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4, (1)



Fig. 3. Multiple exposures (∈ 11 × {1, 8, 16, 24}msec) are
captured to generate a HDR image. Images as obtained from
the camera. No color correction was applied, thus the greenish
look (the sensor’s efficiency varies across color channels, with
the green channel having the highest quantum efficiency).

with ρ the distance from the center of the image (ρ =√
u2 + v2), (u, v) the coordinates in the sensor plane (in

pixels). In this model, f(ρ) gives us the coordinate of the
3D point [u, v, f(ρ)] associated to sensor pixel (u, v). Then,
given the distance ρ of a pixel from the image center, we
estimate the corresponding light direction θ from:

tan θ = ρ/f(ρ). (2)

This model is calibrated following [13] using a checkboard
of known geometry. Fig. (4) presents calibration results.

C. Sky Image Analysis and Prediction

1) Light projection model: We consider a light projection
model that maps the light to a plane in the sky (see Fig. 5a)
because sub-minute cloud movement can be approximated as
linear in this plane (in the original sensor plane, the cloud
movement is not linear due to the fish-eye lens). The sun can
be assumed to be static (within one minute). Fig. 5 presents
an example of this mapping.

2) Movement Analysis: We use optical flow [14] to cal-
culate the movement of each pixel, and we then use linear
prediction using the calculate model. This is done in the sky
plane projection, where the cloud movement can be assumed
to be linear. Empty pixels can be observed (two pixels may
move to the same location), and we obtain such empty pixels
by interpolating neighbor values. The predicted image is
projected back to the original image plane for the later PV
Estimation.

D. PV Estimation

To estimate PV generation from a sky image we need to
consider the fish-eye lens light projection (in the sensor) and

(a) Mapping function f(ρ)

(b) Checkboard and projected lines.

Fig. 4. Lens calibration. The calibrated model closely matches
the checkboard patterns (projected lines (green) in (b)).

the cosine law (of the PV cell). Also we need to take into
account camera sensor response, and in particular we need
to consider that some pixels of the image saturate1. Pixel
saturation is an important problem, specially during sunny
days, as can be observed in Fig. 6. The PV estimation takes
into account:

1) Light incidence angle: We integrate the light energy
according to the unit projection sphere (Fig. 5a) using the
calibrated lens model. For clarity, we use color channel c.
Each pixel value Ic(u, v) is weighted considering the light
ray direction for the pixel and the PV cell:

PVw = αc

∑
(u,v)

Ic(u, v)w(u, v), (3)

where w(u, v) = wa(u, v)wb(u, v). Here wb(u, v) represents
the weight of the spherical sector sampled by pixel (u, v) (for
our fish-eye lens wb(u, v) is constant), and wa(u, v) = cos θ
is the weight associated the angle of incidence in the PV cell.
If we define ρ =

√
u2 + v2, the value of θ is estimated from:

tan(θ) = ρ/f(ρ). (4)

2) Spectral response: The PV cell spectral response and
image sensor color channel have a specific spectral response.

1Note that while the HDR image helps reducing saturation the dynamic
range of the light is too large to be handle by a standard camera.



(a)

(b) Input image (c) Sky plane projection

Fig. 5. (a) Light projection model: sensor, sphere and sky plane
projections. The cloud movement is linear in the sky plane
projection, thus it is used for cloud movement prediction. The
unit sphere projection is used for PV estimation. (b) Original
image (camera sensor) and (c) its sky plane projection.

To take them into account, the intensity of each color channel
c ∈ C = {R,G,B} is included in the PV estimation:

PVsp =
∑
c∈C

αc

∑
(u,v)

Ic(u, v)w(u, v), (5)

with Ic the intensity of color channel c ∈ C = {R,G,B} of
pixel (u, v). In the following we will refer to the model in
Eq. 5 as the Linear model for PV estimation (the parameters,
αc, of this model are obtained using linear regression).

3) Saturation: Let us call Sc = {(u, v)|I(u, v) = Imax}
the set of saturated pixels, Ĩc(u, v) the pixel intensity if there
were no saturation, and Imax the saturation value. Then we
estimate PV generation taking into account saturation using:

PV s = PVsp +
∑
c∈C

α
′

c

∑
(u,v)∈Sc

(Ĩc(u, v)− Imax)w(u, v). (6)

Given that we do not know the value Ĩc(u, v) due to pixel
saturation, we estimate the PV generation using a Non-Linear
regression that uses all known terms in Eq. (6):

ŷ = F

 ∑
(u,v)∈Nc

Ic(u, v)w(u, v),
∑

(u,v)∈Sc

w(u, v), |Sc|

 .

(7)

(a) Cloudy day

(b) Sunny day

Fig. 6. PV generation (red) vs average image intensity (green).
In the case of a cloudy day the average image intensity is a
good predictor of the PV generation, but in a sunny day (right)
this does not hold due to the camera sensor saturation.

TABLE II
PV ESTIMATION EVALUATION. SEE FIG. 7 FOR PLOTS OF THE RESULTS.

RAE E1 [%] RMSE E2 [%]
Data (Figure) Linear Non-Linear Linear Non-Linear
Cloudy (7a) 11.85 7.78 13.71 9.68
Partly cloudy (7b) 20.11 14.14 30.97 22.58
Partly cloudy (7c) 24.67 14.34 28.64 20.11
Sunny (7d) 25.63 13.36 26.59 14.37
Complete test set 25.52 18.27 32.9 24.16

Namely the weighted sum of non-saturated pixels, the sum of
the weights of saturated pixels, and the number of saturated
pixels |Sc|), for all colors channels (with Nc the set of non-
saturated pixels for channel c) are used. The rationale is that
the number of saturated pixels per color channels can provide
information regarding the saturated regions.

4) Experiments in PV estimation: To test the PV estima-
tion we consider the two cases described above: Linear and
Non-Linear regression, i.e. Eq. 5 and Eq. 7 respectively. This
is done using Matlab function “fitlm”.

We evaluate the accuracy using two measures: the relative
absolute error rate (RAE):

E1 = 100
1

T

∑
t

|y(t)− ŷ(t)|/y(t), (8)



and the root mean squared error rate (RMSE):

E2 = 100

√
1

T

∑
t

(y(t)− ŷ(t))2/ȳ, (9)

with y(t) the ground truth, ŷ(t) the predicted value, and T
the number of samples.

The regression models are estimated using 56 days worth
of data, and evaluated using data from 28 days (different from
the ones used for building the regression model). Figure 7 and
Table II show results under some typical weather conditions.
From these results we can see that

• The relative absolute error rate (E1) for all test videos
is 25.52%, and 18.27% for the Linear case (Eq. 5) and
the Non-Linear case (Eq. 7) respectively.

• The root mean squared error rate (E2) for all test videos
is 32.9%, and 24.16% for the Linear estimation (Eq. 5)
and Non-Linear estimation (Eq. 7) respectively.

• For a cloudy day case (Fig. 7a), we observe that E1 is
11.85%, and 7.78% for the linear estimation (Eq. 5) and
the non-linear estimation (Eq. 7) respectively. The good
performance is due to the low pixel saturation.

• For a sunny day case (Fig. 7d), i.e. pixel saturation, we
observe that E1 is 25.63%, and 13.36% for the linear
estimation (Eq. 5) and the non-linear estimation(Eq. 7)
respectively. In this case the error, compared to the
cloudy day, is almost doubled.

In summary, the method is accurate when the image is not
saturated, and explicitly using information of the saturation
further improves when saturation occurs.

IV. CONCLUSIONS

We have presented a system for sub-minute (1-60 sec.) PV
prediction based on the analysis of sky images and cloud
movement. This system is location-independent, and it does
not require historical data nor dynamical models.

Target applications of this sub-minute prediction system
include: i) enhancing energy management systems (at homes,
factories, etc.), ii) improving the management of distribution
& transmission networks, and iii) reducing the need of backup
generation capacity. Also, sky and cloud analysis can be
useful for weather prediction and atmospheric studies.

Future research directions include: layered cloud movement
analysis, cloud transparency estimation, prediction of sun
occlusion, and formulating a model of the sky image intensity
that takes into account Mie scattering and Rayleigh scattering.
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(a) Mostly cloudy day
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(b) Partly cloudy day
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(c) Partly cloudy day
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(d) Sunny day

Fig. 7. PV estimation. Linear regression is used for PV esti-
mation. The usage of information regarding pixel saturation
(blue) improves the results, in particular during sunny periods.
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