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Camera Calibration Based on Mirror Reflections

Kosuke Takahashi1,a) Shohei Nobuhara1,b)

Abstract: This paper addresses the use of mirror reflections for camera calibration. Camera calibration is an essential
technique for analyzing the geometric and radiometric relationship between a 3D space and a 2D image. Most conven-
tional camera calibration methods are based on a fundamental assumption: a camera can directly observe a reference
object of known geometry. However, there are cases in which this assumption does not hold in practical scenarios.
One approach to camera calibration in such cases is the use of a “mirror” as a supporting device. A mirror generates
a virtual reference object that can be expressed using a small number of parameters. In addition, the 2D projection
of the reflection object is equal to that of the known reference object from the virtual viewpoint. This paper utilizes
these features and tackles two challenges of the geometric camera calibration; the first challenge is the intrinsic camera
calibration when a known reference object is not available and the second challenge is the extrinsic camera calibra-
tion when the camera cannot directly observe a known reference object due to a physical constraint on the imaging
system. The proposed algorithms introduce novel constraints, kaleidoscopic projection constraint and orthogonality
constraint, which are hold with the mirror reflections for solving these problems. Evaluations with synthesized and
real data demonstrates that the proposed algorithms can work properly and report the robustness of it in comparison
with conventional methods.

1. Introduction
A ray omitted from a light source or reflected from the surface

of an object reaches an image sensor through a lens and is col-
lected as an “image”. Understanding this generating process of
a image, that is, describing to where a point in 3D space is pro-
jected with how much intensity, is a fundamental and important
problem for various tasks in computer vision, such as 3D recon-
struction and motion analysis. In order to analyze the generating
process, to use an appropriate camera model and to estimate the
camera parameters are called “camera calibration.”

Camera calibration has been a fundamental research topic in
computer vision for many years. While the strict meaning of
camera calibration depends on the configuration of the imaging
system, camera calibration can be divided into two types: geo-
metric calibration and radiometric calibration.

Geometric camera calibration: With this type, the “to
where” a 3D point is projected onto a 2D image plane is esti-
mated. That is, there is a geometric relationship between a 3D
space and a 2D image plane. This type of calibration is thus ap-
propriate for analyzing geometric transformation involving a 3D
space and a 2D image plane.

Radiometric camera calibration: With this type, the “how
much” intensity is estimated. It is appropriate for analyzing ra-
diometric transformation involving a 3D space and a 2D image
plane. This calibration includes removing shading caused by the
lens [27] or noise on the image sensor [11], estimation of the ra-
diometric response function [18], and so on.

This paper focuses on the analysis of geometric properties in-
volving a 3D space and a 2D image plane, so it mainly discusses
geometric camera calibration of a perspective camera model.
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Fig. 1 The overview of the geometric camera calibration.

As illustrated in Figure 1, geometric camera calibration com-
prises intrinsic camera calibration and extrinsic camera calibra-
tion. The former estimates the intrinsic parameters, which de-
scribe the camera properties: focal length, optical center, lens
distortion, and so on. The latter estimates the extrinsic parame-
ters, which describe the position and pose of the camera.

Geometric camera calibration has three basic steps: (1) capture
a reference object for which the geometric features are known,
(2) determine the correspondences between the features and their
projections, and (3) estimate each parameter from the correspon-
dences using the camera model.

For example, Tsai [29] estimated the intrinsic and extrinsic pa-
rameters from the correspondences between the 3D points for
which the geometries were known in a world coordinate system
and their 2D projections. Zhang [31] used a known reference
point on a single plane as a reference object, e.g. , a chessboard,
to estimate the camera parameters.

These conventional methods share a fundamental assumption:
the camera can directly observe a reference object for which the
geometry is known. However, this assumption does not always
hold in practical cases, so these methods do not always work
properly. For example, while intrinsic camera calibration should
be done using known reference objects in the camera’s field-of-
view for high precision estimation, a practical known reference
object is not always available when capturing images on a certain
scale. Figure 2(a) illustrates the case in which a known reference
object is not practical in terms of scale. In addition, Figure 2(b)
illustrates the case in which a reference object is not observable
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Fig. 2 Example problems with previous calibration methods: (a) using a
known reference object is not practical in terms of scale; (b) a refer-
ence object is not observable directly from the camera.

from the camera. For a vision-based robot [4] with a display-
camera system [6, 13, 16], although the extrinsic parameters be-
tween the camera and each part of the system (e.g. a robot arm
and a body) are important, they are often unobservable directly
from the camera due to a physical constraint on the imaging sys-
tem. Thus, the previous methods can be problematic depending
on the configuration of the imaging system and the situation.

The methods introduced in this paper for solving these two
problems uses algorithms that enable the use of a mirror as a sup-
porting device for calibration. Mirrors can generate reflections
of a real object, and the reflections can be defined using a small
number of parameters. This means that they can be recognized
as a parametric 3D model. Furthermore, 2D projections of reflec-
tions are equal to those of the known reference object from the
virtual viewpoint. In other words, the mirror extends the cam-
era’s field-of-view. As illustrated in Figure 3, the problems are
overcome by

• setting planar mirrors and generating multiple reflections
consisting of a parametric 3D model with an unknown 3D
point and its reflections (Figure 3(a)) and

• setting a planar mirror that enables the camera to observe a
known reference object (Figure 3(b)).

The potential of using mirrors to solve these problems of camera
calibration in practical situations is explored in this paper.

1.1 Problem Statement and Contributions
This paper focuses on geometric camera calibration in cases

where the fundamental assumption, i.e. the camera can directly
observe a reference object for which the geometry is known, does
not hold and tackles the two problems; intrinsic camera calibra-
tion without a known reference object and extrinsic camera cali-
bration with an unobservable reference object.

Intrinsic Camera Calibration Without Known Reference
Object: In cases where a known reference object is not avail-
able, we introduce mirrors to generate reflections of a 3D point
of unknown geometry and recognize its reflections as a reference
object of a parametric 3D model, as shown in Figure 3(a).

In this paper, a novel intrinsic camera calibration algorithm is
introduced that utilizes the parametric 3D model by multiple pla-
nar mirrors consisting of a kaleidoscopic imaging system. Three
problems must be solved in order to realize this method: cham-
ber assignment of the kaleidoscopic projections, estimation of
the mirror parameters, and estimation of the intrinsic parame-
ters. The key contribution of this work is the introduction of
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Fig. 3 Mirror-based calibration uses (a) multiple reflections of a 3D point as
a reference object of a parametric 3D model or (b) mirrors to enable
the camera to observe the reflections of a known reference object.

a novel geometric constraint, the kaleidoscopic projection con-
straint, which is satisfied by projections of high-order reflections.
This constraint provides multiple linear equations for the mirror
parameters for a single 3D point and solves the three problems.

Extrinsic Camera Calibration with Unobservable Refer-
ence Object In cases where the camera cannot directly observe
a reference object due to a physical constraint on the imaging
system, we introduce mirrors to enable the camera to directly ob-
serve the reflections of a known reference object (Figure 3(b)).

In this paper, a novel two types of mirror-based algorithms are
introduced that estimates the extrinsic parameters between the
camera and a reference object located outside its field-of-view.

The first algorithm utilizes a planar mirror. Since the poses and
positions of the reference object and the planar mirror are un-
known, the extrinsic parameters cannot be determined uniquely
from a single image of the reflection. To overcome this problem,
an orthogonality constraint that is satisfied among reflections by
multiple mirror poses is introduced. This constraint is used to es-
timate the extrinsic parameters, that is, three reference points and
three mirror poses, with the minimal configuration.

The mirror-based methods can be troublesome for preparing a
mirror and calibrating it every time in a casual scenario, such as
gaze correction in a video conference [16]. For such cases, the
second algorithm utilizes the human cornea based on the fact that
the surface of the human eye reflects light like a mirror, meaning
that the human eye can be modeled as a spherical mirror. The
introduction of a geometric model of the human cornea enables
estimation of extrinsic parameters with a simple configuration,
i.e., one mirror pose and three or five reference points.

The rest of this paper is organized as follows. Section 2 pro-
vides fundamental knowledge and related work on camera cal-
ibration and mirror geometry. Section 3 presents a novel algo-
rithm for intrinsic camera calibration using multiple planar mir-
rors. Section 4 and Section 5 present novel methods for planar
mirror-based and human-cornea-based extrinsic camera calibra-
tion. Section ?? cocludes this paper and outlines future works.

2. Camera Calibration and Mirror Geometry
2.1 Geometric Camera Calibration of Perspective Camera

The perspective camera model is illustrated in Figure 4. Let
p{W} = (X{W},Y {W},Z{W})⊤ and p{C} = (X{C},Y {C},Z{C})⊤ denote a
3D point p in a world coordinate system and a camera coordinate
system, respectively. They satisfy

p{C} = Rp{W} + t, (1)
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Fig. 4 The perspective camera model. The effect of lens distortion is mod-
eled as the non-linear transformation in the normalized image coor-
dinates.

where R is a rotation matrix and t is a translation vector. Pa-
rameters R and t are extrinsic camera parameters representing
the pose and position of the camera in the world coordinate sys-
tem. The goal of extrinsic camera calibration is to estimate these
parameters. Note that we hereinafter omit the superscript repre-
senting the coordinate system for cases in which p is represented
in the camera coordinate system.

In addition, let q = (u, v) denote the projection of p{C} in a
pixel image coordinate system. This q is given by a perspective
projection:

λq̃ = Ap{C} =


f 0 cu

0 f cv
0 0 1

 p{C}, (2)

where q̃ denotes the homogeneous coordinate of q and λ is a scale
parameter. The f is focal length and (cu, cy) are the optical centers
expressed in pixels coordinates.

This projection model is extended by taking into account lens
distortion. Suppose p̂ = (x, y, 1) denotes the normalized image
coordinates of p{C}, and p̆ denotes the distorted coordinates of p̂.
This p̆ = (x̆, y̆, 1) is expressed as

x̆ =x(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2x2)

y̆ =y(1 + k1r2 + k2r4 + k3r6) + p1(r2 + 2y2) + 2p2xy,
(3)

where r2 = x2 + y2. The ki(i = 1, 2, 3) and pi(i = 1, 2) denote the
coefficients of the radial and tangential factors of lens distortion,
respectively.

A 2D observation q̆ including lens distortion is given by the
perspective projection of p̆; that is, λ ˜̆q = A p̆. The ideal 2D projec-
tion q without lens distortion can be computed from q̆ by solving
Eq. (3) numerically for p̂ with intrinsic camera parameters A and
d = (k1, k2, k3, p1, p2). The goal of intrinsic camera calibration is
to determine these parameters.

2.2 Mirror Geometry
The planar mirror geometry is illustrated in Figure 5. Con-

sider a 3D point p and its reflection p′ from mirror π. Their ideal
projections without lens distortion, q and q′, are given by the per-
spective projection:

λq = Ap, λ′q′ = Ap′, (4)

where λ and λ′ are scale parameters.
Let n and d(> 0) denote the normal and the distance of the

mirror π satisfying
n⊤x + d = 0, (5)

d
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t
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Fig. 5 Planar mirror geometry: mirror π with normal n and distance d re-
flects 3D point p to p′; they are projected to q and q′ respectively.
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Fig. 6 Kaleidoscopic imaging system consists of multiple planer mirrors.
Up: two mirrors. Bottom: three mirrors. The projections of reflected
target object in each chamber are recognized as the target observed
by the virtual cameras, which are generated by the planer mirrors.

where x is a 3D position in the scene. Here the normal vector is
oriented toward the camera center.

As illustrated in Figure 5, the distance t from p and p′ to mir-
ror π satisfies p = p′ + 2tn. The projection of p′ to n gives
t + d = −n⊤ p′. By eliminating t from these two equations, we
have

p = −2(n⊤ p′ + d)n+ p′, (6)

⇔ p̃ = S p̃′ =
 H −2dn
01×3 1

 p̃′, (7)

where H is a 3×3 Householder matrix given by H = I3×3−2nn⊤,
0m×n denotes the m×n zero matrix, and In×n denotes the n×n iden-
tity matrix. Note that this S also satisfies inverse transformation;
that is p̃′ = S p̃0.

3. Mirror-based Intrinsic Camera Calibration
This section provides a novel intrinsic camera calibration al-

gorithm by introducing multiple planar mirrors and consisting a
kaleidoscopic imaging system (Figure 6).

3.1 Kaleidoscopic Imaging System
Suppose the camera observes the target 3D point directly and

indirectly via Nπ mirrors as shown in Figure 6. Let p0 denote the
original 3D point and pi denote the first reflection of p0 by the
mirror πi (i = 1, · · · ,Nπ) (Figure 8). The reflection pi is given by

p̃0 = S i p̃i =

 Hi −2dini

01×3 1

 p̃i, (8)

where ni and di denote the mirror normal and its distance respec-
tively and Hi is given by Hi = I3×3 − 2nin⊤i .
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Fig. 7 The outline of the proposed optimization strategy for intrinsic camera calibration.

Furthermore, such mirrors define virtual mirrors as a result of
multiple reflections. Let πi j (i, j = 1, · · · ,Nπ, i , j) denote the
virtual mirror defined as a mirror of π j by πi, pi j denote the reflec-
tion of pi by πi j, and Li j denote the chamber where pi j is projected
to. Also the matrices S i j and Hi j for πi j are given by

S i j = S iS j,

Hi j = HiH j.
(9)

The third and further reflections, virtual mirrors, and chambers
are defined in the same manner:

Π
Nk
k=1S ik (ik = 1, 2, 3, ik , ik+1), (10)

where Nk is the number of reflections.
Obviously the 3D subspaces where p0 and pi can exist are mu-

tually exclusive, and the captured image can be subdivided into
regions called chambers corresponding to such subspaces. Sup-
pose the perspective projections of px is denoted by qx ∈ Q (x =
0, 1, . . . ,Nπ, 12, 13, . . . ) in general. In this paper we denote the
2D region where q0 exists as the base chamber L0, and we use Lx

to denote the chamber where qx exists.

3.2 Problem Description
Conventional intrinsic camera calibration techniques have been

conducted from a 3D model of “known” geometry and its 2D pro-
jections [31]. That is such approaches require a reference object
whose surface has several feature points such that their 3D po-
sitions are provided a priori and they are uniquely identifiable in
2D images. Hence in cases of microscopic or large-scale environ-
ment, it is not trivial task to provide such 3D models in practice.

The key idea to solve this problem is to introduce a paramet-
ric 3D model whose 3D feature positions are defined by a small
number of parameters. To realize the idea, this research utilizes
multiple reflections of 3D points by planar mirrors. That is our
calibration estimates the intrinsic parameters as well as the mirror
parameters to identify the 3D model structure simultaneously.

The configuration we consider are as follows: (a) each of the
detected observation is not assigned to the corresponding cham-
ber, (b) it has two or more planar mirrors as a supporting device
whose normals and distances are unknown, and (c) it has one per-
spective camera and its intrinsic parameters are unknown.

Figure 7 illustrates an outline of the proposed algorithm. In our
algorithm, there are three problems to be solved. Consider a 2D
point set R = {ri} detected from the captured image as candidates
of qx. The problems are:

• to assign the chamber label Lx to ri ∈ R to identify to which
chamber each of the projections qx belong (Section 3.4),

• to estimate the parameters of the real mirrors πi(i =
1, · · · ,Nπ), i.e. normals ni and distances di of them, from
kaleidoscopic projections qx (Section 3.5), and

• to estimate the intrinsic parameters, i.e. A and d, from q̆x and
the mirror parameters as the model parameters (Section 3.6).

For solving these problems, we utilize a kaleidoscopic projection
constraint introduced in the next section.

3.3 Kaleidoscopic Projection Constraint
Suppose the camera observes a 3D point of unknown geome-

try p. The mirror π of matrix S defined by the normal n and the
distance d reflects p to p′ = S p (Eq (7)).

Based on the epipolar geometry [10,30], n, p and p′ are copla-
nar and satisfy (n× p)⊤ p′ = 0. By substituting Eq (4), we obtain

q⊤A−⊤[n]⊤×A−1q′ = 0, (11)

where [n]× denotes the 3 × 3 skew-symmetric matrix represent-
ing the cross product by n and this is the essential matrix of this
mirror-based binocular geometry [30].

By representing the normalized image coordinates of q and q′

by (x, y, 1)⊤ = A−1q and (x′, y′, 1)⊤ = A−1q′ respectively, Eq (11)
can be rewritten as(

y − y′ x′ − x xy′ − x′y
)

n = 0. (12)

We call this Eq (12) as kaleidoscopic projection constraint in this
paper. This constraint is satisfied by not only single reflections
but also high-order reflections as below.

Single reflection: Let p0 denote a 3D point and pi denote the
reflection by mirror πi. Since pi is expressed as pi = S i p0, the
normalized image coordinates of their projections, q0 and qi, ob-
viously satisfy Eq (12) as:(

y0 − yi xi − x0 x0yi − xiy0

)
ni = 0, (13)

where (x0, y0, 1)⊤ = A−1q0 and (xi, yi, 1)⊤ = A−1qi.
High-order reflections: Let pi j (i, j = 1, · · · ,Nπ, i , j) de-

note the reflection of pi by πi j. This pi j can be expressed as
pi j = S i j pi = S i jS i p0 = S iS j p0 based on Eq (9). Here pj = S j p0

holds as well, and we obtain pi j = S iS j p0 ⇔ pi j = S i pj. This
equation means that pi j can be recognized as the first reflection
of pj by πi, and hence the normalized image coordinates of their
projections, qi j and q j, also satisfy Eq (12) as:(

y j − y′i j xi j − x j x jyi j − xi jy j

)
ni = 0, (14)

where (xi j, yi j, 1)⊤ = A−1qi j.
In Nkth reflections, we obtain the kaleidoscopic projection con-

straint between pik = S iNk
Π

Nk−1
k=1 S ik p0 and pi′k

= Π
Nk−1
k=1 S ik p0 in the

same manner.

c⃝ 2013 Information Processing Society of Japan



IPSJ SIG Technical Report

Camera	

Mirror	

Mirror	

⇡1 ⇡2

L0

L1 L2

L12 L21

L121 L212

⇡12 ⇡21

⇡212

⇡121

q0

q1
q2

q12

q121

q21

q212

p0

p1

p2

p12
p121

p21p212

⇡1

⇡2

Reference point	

Fig. 8 Chamber assignment. The magenta region indicates the base cham-
ber. The red, green and blue regions indicate the chambers corre-
sponding to the first, second, third reflections respectively.

3.4 Chamber Assignment
Based on the kaleidoscopic projection constraint, we introduce

a new algorithm that identifies the chamber label of each projec-
tions. Our algorithm utilizes an analysis-by-synthesis approach
which iteratively draws a number of projections and evaluates
their geometric consistency in terms of the kaleidoscopic projec-
tion in order to find the best chamber assignment.

In what follows the concept of base structure, i.e. minimal
configuration for estimating the real mirror parameters using the
kaleidoscopic projection constraint, is introduced. Our algorithm
hypothesizes a number of base structure candidates from ob-
served points and evaluate each of their consistencies as a kalei-
doscopic projection. Notice that we introduce our algorithm in
a two mirror case as an example here, and it can be extended to
three or more mirror cases easily.
3.4.1 Base Structure

Suppose 2Nπ points of the observed points R are selected and
they could be hypothesized as q0, q1, . . . correctly. The mirror
normal ni has two degrees of freedom and can be linearly esti-
mated by collecting two or more linear constraints on it. In case
of Nπ = 2, the mirror normal n1 can be estimated as the eigen-
vector corresponding to the smallest eigenvalue of the coefficient
matrix of the following system defined by the kaleidoscopic pro-
jection constraint using {⟨q0, q1⟩, ⟨q2, q12⟩} in Figure 9(a): y0 − y1 x0 − x1 x0y1 − x1y0

y2 − y12 x12 − x2 x0y12 − x12y0

 n1 = 03×1, (15)

where ⟨q, q′⟩ denotes a doublet, the pair of q and q′ for Eq (12).
Using the estimated n1 and assuming d1 = 1 without loss of

generality, the 3D point p1 can be described as p̃1 = S 1 p̃0 by Eq
(7). By substituting p0 and p1 in this equation by using q0 and q1

as expressed in Eq (4), the 3D point p0 and p1 can be triangulated
by solving the following linear system for λ0 and λ1:

p̃0 = S 1 p̃1, (16)

⇔
[
H1A−1q0 −A−1q1

] λ0

λ1

 = 2n1. (17)

Similarly the 3D points p2 and p12 can be triangulated by solv-
ing the linear system for λ2 and λ12. Because p2 is the reflection
of p0 by the mirror π2, the mirror normal n2 as well as the distance
d2 can be estimated as

n2 =
p0 − p2

|p0 − p2|
, d2 = −n⊤2

p0 + p2

2
. (18)

This doublets pair {⟨q0, q1⟩, ⟨q2, q12⟩} is a minimal configura-
tion for linear estimation of the real mirror parameters in Nπ = 2
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Fig. 9 Red boxes show examples of base structures in case of (a) Nπ = 2
and (b) Nπ = 3. A red point indicates the point assumed as the base
chamber and dotted boxes indicate doublets. Red dotted lines indi-
cate reflection pairs and blue lines indicate discovered mirrors.

case and we call such minimal configuration as a base structure
of our chamber assignment. Notice that the above doublet pair is
not the unique base structure. That is, {⟨q0, q2⟩, ⟨q1, q21⟩} is also
a base structure for Nπ = 2 case.
3.4.2 Chamber Assignment Algorithm

Given the mirror parameters and the triangulated 3D point from
one base structure, the kth reflection and its projection can be syn-
thesized by Eq (7) and Eq (4) with known chamber labels. These
labels are assigned by finding correspondences between the syn-
thesized point Q̂ and the observed point set R = {ri} as a sort of
biparite matching.

Based on this assignment, the proposed method introduces a
recall ratio R which measures how many of the synthesized pro-
jections that are supposed to be visible have been assigned de-
tected points:

R = |Rc|
|Q̂|
, (19)

where Rc ⊆ R is the set of detected points assigned labels, |Q̂| and
|Rc| denote the size of the set Q̂ and Rc respectively.

The proposed chamber assignment algorithm examines if each
possible base structure satisfies the kaleidoscopic projection con-
straint expressed by Eq (15) and other geometric constraints,
which are detailed in [26]. Once the base structure passes these
verifications, its recall ratio R is computed by Eq (19). Finally the
best estimate of the chamber assignment is returned by finding the
base structure of the highest recall ratio.

3.5 Mirror Parameters Estimation
This section introduces a novel algorithm of mirror parame-

ters estimation given the chamber assignment for kaleidoscopic
projections of single 3D point.

While the algorithm in Section 3.4.1 can also estimate the mir-
ror parameters, it is a per-mirror estimation and it is not guaran-
teed to estimate mirror parameters consistent with projections of
higher order reflections. Instead of such mirror-wise estimations,
this section proposes a new linear algorithm which calibrates the
kaleidoscopic mirror parameters simultaneously by observing a
single 3D point in the scene. Notice that the algorithm is first in-
troduced by utilizing up to the second reflections, but they can be
extended to third or further reflections.
3.5.1 Mirror Normals

As illustrated in Figure 10 (a), suppose a 3D point p0 is pro-
jected to q0 in the base chamber, and its mirror pi by πi is pro-
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Fig. 10 Corresponding points in (a) Nπ = 2 and (b) Nπ = 3 case. (a) Two
pairs ⟨q0, q1⟩ and ⟨q2, q12⟩ (red) are available on mirror π1 (blue).
(b) Three pairs ⟨q0, q1⟩, ⟨q2, q12⟩ and ⟨q3, q13⟩(red) are available on
mirror π1 (blue)

jected to qi in the chamber Li. Likewise, the second mirror pi j

by πi j is projected to qi j in the chamber Li j, and so forth. Here,
kaleidoscopic projection constraints are satisfied by two pairs of
projections on each mirror π1 and π2. From these constraints, n1

and n2 can be estimated by solving y0 − y1 x1 − x0 x0y1 − x1y0

y2 − y12 x12 − x2 x2y12 − x12y2

 n1 = 03×1. (20)

and  y0 − y2 x2 − x0 x0y2 − x2y0

y2 − y21 x21 − x1 x1y21 − x21y1

 n2 = 03×1. (21)

An important observation in this simple algorithm is the fact
that (1) this is a linear algorithm while it utilizes multiple reflec-
tions, and (2) the estimated normals n1 and n2 are enforced to
be consistent with each other while they are computed on a per-
mirror basis apparently.

The first point is realized by using not the multiple reflections
of a 3D position but their 2D projections. Intuitively a reasonable
formalization of kaleidoscopic projection is to define a real 3D
point in the scene, and then to express each of the projections of
its reflections by Eq (7) coincides with the observed 2D position
as introduced in Section 3.5.3 later. This expression, however, is
nonlinear in the normals ni (i = 1, 2) (e.g. p12 = S 1S 2 p0). On the
other hand, projections of such multiple reflections can be asso-
ciated as a result of single reflection by Eq (14) directly (e.g. n1

with q12 and q2 as the projections of p12 and S 2 p0 respectively).
As a result, we can utilize 2D projections of multiple reflections
in the linear systems above.

This explains the second point as well. The above constraint
on q12, q2 and n1 in Eq (20) assumes p2 = gS 2 p0 being satisfied,
and it is enforced by (A−1q2 × A−1q0)⊤n2 = 0 in the first row
of Eq (21). Inversely, on estimating n1 by Eq (20), it enforces
p1 = S 1 p0 for Eq (21).

Note that this algorithm can be extended to third or further re-
flections intuitively. For example, if p21 and its reflection by π1

are observable as λ121q121 = Ap121 = AS 1 p21, then they provide

(y21 − y121, x121 − x21, x21y121 − x121y21) n1 = 0, (22)

and can be integrated with Eq (20).
Also, this algorithm can be extended to Nπ ≥ 3 cases. In case

of Nπ = 3, for example, we solve
y0 − y1 x1 − x0 x0y1 − x1y0

y2 − y12 x12 − x2 x2y12 − x12y2

y3 − y13 x13 − x3 x3y13 − x13y3

 n1 = 03×1, (23)

instead of Eqs (20) from point correspondences in Figure 10 (b).
3.5.2 Mirror Distances

Once the mirror normals n1 and n2 are given linearly, the mir-
ror distances d1 and d2 can also be estimated linearly as follows.

Kaleidoscopic Re-projection Constraint: The perspective
projection Eq (4) indicates that a 3D point pi and its projection
qi should satisfy the colinearity constraint:

(A−1qi) × pi = xi × pi = 03×1, (24)

where xi =
(
xi yi 1

)⊤
is the normalized camera coordinate of

qi. Since the mirrored points pi (i = 1, 2) are given by Eq (7) as
pi = Hi p0 − 2dini, we obtain

xi × pi = [xi]×
[
Hi −2ni

] p0

di

 = 03×1. (25)

Similarly, pi j is also collinear with its projection qi j:

(A−1qi j) × pi j = [xi j]×
[
HiH j −2ni −2Hinj

] 
p0

di

d j

 = 03×1.

(26)
Based on them, we obtain a linear system of p0, d1 and d2:

[x0]× 03×1 03×1

h1 −2[x1]×n1 03×1

h2 03×1 −2[x2]×n2

h′1,2 −2[x12]×n1 −2h′′1,2
h′2,1 −2h′′2,1 −2[x21]×n2



p0

d1

d2

 = K


p0

d1

d2

 = 015×1,

(27)
where hi = [xi]×Hi, h′i, j = [xi j]×HiH j, h′′i, j = [xi j]×Hinj. By com-
puting the eigenvector corresponding to the smallest eigenvalue
of K⊤K, (p0, d1, d2)⊤ can be determined up to a scale factor. In
this paper, we choose the scale that normalizes d1 = 1.

Notice that Eq (27) apparently has 15 equations, but only 10
of them are linearly independent. This is simply because each of
the cross products by Eqs (24) and (26) has only two independent
constraints by definition.

Also, as discussed in Section 3.5.1, the above algorithm can
be extended to third or further reflections and Nπ ≥ 3 cases
as well. In Nπ = 3, considering the reflection of p23 by π1 as
λ123q123 = Ap123 = AS 1 p23, we have

[x123]×


(H1H2H3)⊤

−2n⊤1
−2(H1n2)⊤

−2(H1H2n3)⊤


⊤ 

p0

d1

d2

d3

 = 03×1. (28)

3.5.3 Kaleidoscopic Bundleadjustment
Once estimated the mirror normals ni and the distances di (i =

1, 2) linearly, the triangulation from kaleidoscopic projections of
a single 3D point can be given in a DLT manner by solving:

K′ p0 = −K′′δ, (29)

as p∗0 = −(K′⊤K′)−1K′⊤K′′δ, where δ = (d1, d2)⊤, K′ is the 15×3
matrix corresponding to the first three columns of K:

K′ =
[
[x0]⊤× , h

⊤
1 , h

⊤
2 , h

′⊤
1,2, h

′⊤
2,1

]⊤
, (30)
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and K′′ is the 15×3 matrix corresponding to the 4th and 5th
columns of K:

K′′ =



03×1 03×1

−2[x1]×n1 03×1

03×1 −2[x2]×n2

−2[x12]×n1 −2h′′1,2
−2h′′2,1 −2[x21]×n2


. (31)

By reprojecting this p∗0 to each of the chambers as

λq̂0 = Ap∗0,

λq̂i = AS i p∗0 (i = 1, 2),

λq̂i, j = AS iS j p∗0 (i, j = 1, 2, i , j),

(32)

we obtain a reprojection error as

E(n1, n2, d1, d2) =
[
q0 − q̂0, e1, e2, e′1,2, e

′
2,1,
]⊤
, (33)

where ei = qi − q̂i and e′i, j = q′i, j − q̂′i, j. By minimizing ||E(·)||2
nonlinearly over n1, n2, d1, d2, we obtain a best estimate of the
mirror normals and the distances.

3.6 Intrinsic Parameters Estimation
As described in Section 3.5, the mirror parameters can be com-

puted from the kaleidoscopic observations undistorted with the
intrinsic parameters. Finally, the proposed method optimizes
these parameters by minimizing the reprojection error as follow.

Suppose q̆∗(A, d, n, δ) denotes the reprojected point from A, d,
n and δ, the proposed method defines the reprojection error as,

E(A, d, n, δ) = Σx||q̆x − q̆∗x(A, d, n, δ)||2. (34)

By minimizing E(·) nonlinearly over A, d, n and δ, we obtain a
best estimate of the intrinsic parameters.

3.7 Evaluations of Intrinsic Camera Calibration
3.7.1 Quantitative Evaluations with Synthesized Data

Experimental Environment The performance of intrinsic
camera calibration with synthesized data is evaluated in the fol-
lowing configuration.

The kaleidoscopic imaging system in this evaluation consists
of three mirrors πi(i = 0, 1, 2) whose normal vectors ni of each
mirror are set to (cosθcosϕ, sinθ, cosθsinϕ) with (θ, ϕ) = (−8, 0)
for n0, (θ, ϕ) = (186, 60) for n1, and (θ, ϕ) = (190,−60)
for n2. The distance of them di are set to d0 = 50mm,
d1 = 53mm and d2 = 54mm. The image size is set to
1920 × 1080. The ground truth of intrinsic parameters ( f , u0, v0)
and d = (k1, k2, k3, p1, p2) are set to (2700, 960, 540) and
(0.001,−0.001, 0.001, 0.002,−0.002). Notice that the chamber
labels are assigned correctly in this valuation.

The evaluations in this section utilize the absolute error of each
parameters as error metrics, that is Ep = |p− pg| where p denotes
each intrinsic camera parameters and pg denotes its ground truth.

The performance of our method is compared with the most
common intrinsic camera calibration algorithm of Zhang [31].

Results In this evaluation, the performance of our proposed
method is compared with the most common intrinsic camera cal-
ibration algorithm of Zhang [31] (Baseline 1). For comparison,

Camera	 Camera	

Reference points	 Reference points	

(a)	 (b)	

Fig. 11 Configurations of intrinsic camera calibration. (a) utilizes the 3 × 4
chessboards and its reflections in 10 chambers. (b) utilizes 30 ran-
dom poses of the chessboards.

we set a 3 × 4 chessboard whose distance of each chess corner
is 10mm in the base chamber whose distance from the camera
is 160mm in the kaleidoscopic imaging system. As illustrated
in Figure 11(1), we utilize the projections of its reflections in 10
chambers, that is until second reflection, as input for each method.

In addition, we compare the results by [31] with the ideal con-
figuration as a reference data, that is the input data consists of 30
observations of above chessboard scattered covering the camera’s
field-of-view in the 3D space randomly as illustrated in Figure
11(b) (Baseline 2).

Figure 12 shows average estimation errors of each intrinsic
camera parameters over 30 trials at different noise σq. The σq

denotes the standard deviation of zero-mean Gaussian pixel noise
injected to the observations q. In each trial, the initial values of A
and d are generated by adding random noise whose level is less
than 5% to the ground truth of each parameters. The red, and blue
are results by the proposed ethod and Baseline 1 and green line is
the result by Baseline 2.

In Figure 12, we can see that the proposed method outperforms
Baseline 1 and is comparable with the Baseline 2. Especially,
distortion parameters estimated by the proposed method have
higher precision that those by the other methods. We consider
that this improvement is caused by the properties of the kaleido-
scopic imaging system, i.e. the reference objects are scattered in
an isotropic manner by mirror reflections and the reflections are
strictly constrained each other with mirror parameters.

From these results, we can conclude that our method can es-
itmate intrinsic parameters in an ideal and a noised environment
robustly compared with baseline methods.
3.7.2 Qualitative Evaluations with Real Data

Experimental Environment As illustrated in Figure 13, the
capture setup consists of one camera (Nikon D7000, 4948×3280
resolution) with a single-focus lens of 28mm and three planar
mirrors. In this evaluation, we compare our method with Zhang
[31] (Baseline 1) as with 3.7.1. The reference object for Baseline
1 is a 5 × 8 chessboard whose distance of each chess corner is
4.45mm. As an ideal configuration for Zhang [31], we utilize a
larger reference object which has 7×10 chessboard with 20.5mm
corners (Baseline 2).

Results Table 1 reports the each parameters estimated by each
method. Notice that proposed method and [31] with the kalei-
doscopic imaging system utilize 10 projections of the reference
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Fig. 12 Estimation errors of each intrinsic parameter and reprojection error at different noise levels σq.

15 images	

(b)	(a)	

Fig. 13 Configurations of intrinsic camera calibration with real data. (a)
utilizes the 5×8 chessboards and its reflections in 10 chambers. (b)
utilizes 15 random poses of the larger 7 × 10 chessboards.

Table 1 Intrinsic parameters estimated by each method.

Parameters Proposed Baseline 1 Baseline 2
f 5882.2 12318.3 6283.4

u0 2474.4 2462.7 2427.6
v0 1639.4 1622.9 1686.2
k1 -0.0103 -0.3381 -0.1059
k2 0.0143 -86.1886 0.3035
k3 -0.0020 2007.4 -0.9600
p1 0.0056 0.0740 0.00109
p2 0.0036 0.0625 0.0006

Table 2 Reprojection error by each method for evaluating robustness.

Data Proposed Baseline 1 Baseline 2
1 0.526 0.487 0.524
2 1.735 13.014 0.933

object, that is projections in each chambers (Figure 13(a)), and
citezhang2000flexible with the ideal configuration utilizes 15 im-
ages of the larger reference object (Figure 13(b)). From these

results, while the intrinsic parameters estimated by Baseline 1 are
different greatly compared with those by Baseline 2 which is con-
sidered as the ground truth, the parameters estimated by proposed
method are close to those by Baseline 2.

Table 2 shows the average of reprojection errors by each
method for evaluating their robustness. Data 1 consists of 10 ob-
servations of 5 × 8 chessboard used for estimating intrinsic pa-
rameters by proposed method and Baseline 1. Data 2 consists of
5 images of large 7 × 10 chessboard used for estimating intrin-
sic parameters by Baseline 2. As to the Baseline 1, based on the
fact that the reprojection errors with Data 2 get worse apparently,
the intrinsic parameters estimated by Baseline 1 does not have
robustness. On the other hand, the reprojection errors by our pro-
posed method with both Data 1 and Data 2 are small enough and
this shows that it estimates robust intrinsic parameters.

From above results, we can state that our proposed method
works properly in the real configuration.

3.8 Discussion
3.8.1 Ambiguity of chamber assignment

In the case of the 8-point algorithm for the regular two-view
extrinsic calibration [10], the linear algorithm return four possi-
ble combinations of the rotation and the translation, and we can
choose the right combination by examining if triangulated 3D
points appear in front of the cameras. The mirror normal estima-
tion in Section 3.4.1 is a special case of the 8-point algorithm, and
this has such sign ambiguity on the mirror normal as described in
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Fig. 14 Kaleidoscopic imaging system using (a) three, (b) four, and (c)
five mirrors. Discontinuities (red lines) appear on the boundaries
of overlapping chambers.

Section 3.4.1. This ambiguity is also solved by considering the
result of triangulation. In other words, estimating the essential
matrix is identical to estimating mirror normal.

In addition, the normal estimation for kaleidoscopic system has
another family of ambiguity due to multiple reflections. As intro-
duced in Section 3.4.1, particular combinations of kaleidoscopic
projections can return physically infeasible solutions, and they
can be rejected by additional geometric constraints as done for
the 8-point algorithm. However, there exists another class of so-
lutions due to a sparse sampling of the observations.

Consider a base structure by the pairs ⟨q0, q12⟩ and ⟨q2, q121⟩
in Figure 8. This configuration can estimate the mirror parame-
ters successfully, one between p0 and p2, and the other between
p0 and p12. While the latter is a virtual mirror, this interpretation
satisfies all the constraints in Section 3.4.1. In other words, we
can assemble a mirror system of this configuration in practice.

To solve this problem, Section 3.4 utilizes the recall ratio (Eq
(19)) so that our algorithm returns the solution which reproduces
as many as possible candidate points r observed in the image.
3.8.2 RANSAC or PROSAC for Chamber Assignment

While the proposed algorithm examines all possible base struc-
tures as introduced in Section 3.4.2 to evaluate the performance
thoroughly, we can also consider a RANSAC or PROSAC ap-
proach [3]. For example, we can first hypothesize the base cham-
ber from Nr candidates, and then can consider only Nπ+1 nearest
points around it for estimating the mirror parameters. Designing
and evaluating such approach is one of our future work.
3.8.3 Degenerate Cases

The both proposed algorithms of chamber assignment and mir-
ror parameters estimation are based on the kaleidoscopic projec-
tion constraint (Eq (12)) satisfied by more than or equal to second
reflections. Therefore these algorithms do not work in the follow-
ing two cases. (1) If the two mirror are parallel, the mirror nor-
mals are not computable by solving Eq (15), Eq (20) and Eq (21)
because the constraints are linearly dependent. (2) If the second
reflections are not observable due to the angle of view or discon-
tinuities, the mirror normals are not computable. Especially, in
case of using more than three mirrors, discontinuities are more
likely to happen in general, and finding the second reflections it-
self become difficult (Figure 14).
3.8.4 Application: 3D Reconstruction

The kaleidoscopic system can be recognized as a virtual multi-
view capture system. Here we evaluated the feasibility of 3D
reconstruction with estimated mirror parameters.

Figure 15 shows our kaleidoscopic capture setup. In this eval-

Camera	

Projector	

Kaleidoscope	

Fig. 15 A kaleidoscopic capture setup for 3D reconstruction. It consists of
three first surface mirrors, a camera and a laser projector.

Fig. 16 Reconstructed 3D shape of cat object.

uation, the intrinsic parameter A of the camera (Nikon D600,
6016×4016 resolution) is calibrated beforehand [31]. As a target
object, we utilized a cat (about 4×5×1 cm) with three planar first
surface mirrors. The projector (MicroVision SHOWWX+ Laser
Pico Projector, 848×480 resolution) is used to cast line patterns
to the object for simplifying the correspondence search problem
in a light-sectioning fashion (Figure 15 left), and the projector
itself is not involved in the calibration w.r.t.the camera and the
mirrors. In this evaluations, the mirror parameters are estimated
by the algorithm introduced in Section 3.5.

Figure 16 shows a 3D rendering of the estimated 3D shape
using the mirror parameters calibrated by the proposed method,
while the residual reprojection error indicates the parameters can
be further improved for example through the 3D shape recon-
struction process itself [7]. From these results, we can conclude
that the proposed provides a sufficiently accurate calibration for
3D shape reconstruction.

3.9 Summary
This section proposes a novel algorithm of full-automatic in-

trinsic camera calibration algorithm introducing multiple mirrors
and consisting a kaleidoscopic imaging system. To realize this
algorithm, there are hree challenges to be solved, i.e. (1) chamber
assignment, (2) mirror parameters estimation and (3) intrinsic pa-
rameters estimation. For solving them, the proposed method in-
troduces a kaleidoscopic projection constraint which is satisfied
by projections of high-order reflections. Evaluations with synthe-
sized data and real data prove that the proposed method estimates
intrinsic parameters with reasonable precision robustly.

This research mainly focuses on the perspective camera model
with simple lens distortion model. Along with the development
of imaging systems, a wide variety of camera models [9, 15, 21]
and lens models [2, 25] have been proposed. The adaptation to
such configuration should be investigated as a future work.
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4. Mirror-based Extrinsic Camera Calibra-
tion

This section provides a novel planar-mirror based extrinsic
camera calibration algorithm in case where a camera cannot ob-
serve a reference object directly as illustrated in Figure ??.

4.1 Measurement Model
As illustrated by Figure 17, we denote a camera by C and a

mirror by π j ( j = 1, · · · ,Nπ). We use {C} to describe the camera
C coordinate system which is used as the world coordinate system
in this chapter. A vector p in the Y coordinate system is expressed
as p{Y}, while we may omit Y if it is clear from the context.

Let pi{X} (i = 1, · · · ,Np) denote the positions of the reference
points given a priori in its local coordinate system X. These posi-
tions are modeled as

pi{C} = R · pi{X} + t (i = 1, · · · ,Np), (35)

in {C} with a rotation matrix R and a translation vector t. The re-
flection of the ith reference point pi{C} mirrored by π j appears as
pi{C}

j in {C}. These mirrored reference points are projected to the

image screen of the real camera C as qi{I}
j . We model each mirror

π j by its normal vector nj and its distance d j from the camera C.
The distance ti

j from the mirror π j to pi{C}
j is equal to the distance

from π j to pi{C} by definition. The goal of the extrinsic calibration
is to estimate R and t from projected reference points qi{I}

j .
Based on the planar mirror geometry introduced in Section 2.2,

the reference point pi{C} and its reflection pi{C}
j satisfy,

pi{C} = −2(n⊤j pi{C}
j + d j)nj + pi{C}

j . (36)

By removing pi{C} from Eq (35) and Eq (36), we obtain

R · pi{W} + t = −2(n⊤j · pi{C}
j + d j)nj + pi{C}

j . (37)

This is the fundamental equation which describes our measure-
ment model.

4.2 Orthogonality Constraint on Mirror Reflections
Consider a reference point pi and its two mirrored points pi

j,
pi

j′ by two different mirror planes π j and π j′ respectively. The
axis vector mj j′ lying along the intersection of the two mirror
planes is expressed as the cross product of each mirror normals,
mj j′ = nj × nj′ . This axis vector mj j′ satisfies the following or-
thogonality constraint [24] (Figure 18),

(pj − pj′ )
⊤ · mj j′ = 0. (38)

This is the key constraint of this paper. The next section provides
our algorithm to estimate the extrinsic parameters which utilizes
this constraint.

4.3 Extrinsic Camera Calibration Using Orthogonality
Constraint

This section introduces the proposed algorithm which analyt-
ically determines the camera extrinsic parameter from the pro-
jections of Np reference points observed via Nπ different mirror
poses based on the orthogonality constraint.

i
jt

jπ

i
jp

ip

jn

jd

C

i
jt

i
jt

⋅nj pi
j

Mirrored reference object Reference object

Mirror

Camera

Image plane
Iqij

Fig. 17 The measurement model
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p

Fig. 18 An illustration of orthogonality constraint.

Algorithm 1 shows an overview of our calibration algorithm.
Firstly, we solve the PnP problem from mirrored reference points
projected to the image plane, Iqi

j, and obtain their 3D positions
pi

j by EPnP [17] (Np > 3 case). Notice that the “handedness” of
the extrinsic parameters obtained by solving PnP with mirrored
reference points are flipped. However this does not affect the 3D
position pi

j, and hence we ignore such flipped extrinsic parame-
ters. Secondly, we estimate the axis vectors of each pair of mir-
ror planes and obtain the mirror normals from them based on the
othogonality constraint. Finally, we compute R and t by solving
a large system of linear equations.
4.3.1 Computing the axis vector from mirror planes

As described in Sec 4.2, the axis vector mj j′ ( j, j′ =
1, · · · ,Nπ, j , j′) and two mirrored points pi

j, pi
j′ (i =

1, 2, · · · ,Np) satisfy the orthogonality constraint (Eq (38)).
By applying this orthogonality constraint to Np mirrored refer-

ence points pi
j, we obtain:


(p1

j − p1
j′ )
⊤

(p2
j − p2

j′ )
⊤

...

(pNp

j − pNp

j′ )⊤


mj j′ = Q j j′mj j′ = 0. (39)

An axis vector mj j′ can be computed as the right-singular vector
corresponding to the smallest singular value of Q j j′ .
4.3.2 Computing the normal vector of a mirror plane

The axis vector mj j′ is perpendicular to the normal vectors nj

and nj′ of each mirror planes π j and π j′ respectively. That is,

n⊤j · mj j′ = 0,

n⊤j′ · mj j′ = 0.
(40)

When using Nπ mirror poses, we obtain (Nπ − 1) equations of Eq
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Algorithm 1 An overview of extrinsic camera calibration using Nπ mirror poses and Np reference points
Require: Iqi

j (i = 1, · · · ,Np, j = 1, · · · ,Nπ)
Ensure: R, t

for all Nπ mirror poses π j, j = 1, · · · ,Nπ do
Solve the PnP and obtain the mirrored points pi

j.
end for
for all Nπ mirror poses π j, π j′ , ( j, j′ = 1, · · · ,Nπ, j , j′) do

Compute the axis vector mj j′ as the right-singular vector corresponding to the smallest singular value of Q j j′ in Eq (39).
end for
for all Nπ mirror poses π j, ( j = 1, · · · ,Nπ) do

Compute the normal vector nj of the mirror plane π j by Eq (41).
end for
Compute the each column of rotation matrix r1, r2, r3 and the translation vector by solving Eq (42).
Refine r1, r2, r3 by solving the orthogonal Procrustes problem [8].
Refine R, t by applying non-linear optimization [28]

(40) for one normal vector nj. By collecting these equations, we
have

S jnj = 0,

S j = (mj1mj2 · · ·mj j−1mj j+1 · · ·mjNπ )
⊤ (41)

where S j is a (Nπ−1)×3 matrix. A normal vector nj can be com-
puted as the right-singular vector corresponding to the smallest
singular value of S j.

This equation also indicates that we have to provide Nπ ≥ 3
mirror poses in order to estimate nj, because the degree of free-
dom of nj is 2.
4.3.3 Computing Extrinsic Parameters

Up to this point, we obtain the 3D positions of mirrored refer-
ence points pi

j(i = 1, · · · ,Np, j = 1, · · · ,Nπ) and mirror normals
nj. The 3D positions of reference points pi{W} = (xi, yi, zi) are
supposed to be given a priori in its local coordinate system X. By
substituting these known parameters into Eq (37), we can derive
a large system of linear equations:

AZ = B. (42)

where

A =



I3 2n1 03×1 · · · 03×1 x1I3 y1I3 z1I3

I3 2n1 03×1 · · · 03×1 x2I3 y2I3 z2I3
...

I3 2n1 03×1 · · · 03×1 xNp I3 yNp I3 zNp I3

I3 03×1 2n2 · · · 03×1 x1I3 y1I3 z1I3
...

I3 03×1 2n2 · · · 03×1 xNp I3 yNp I3 zNp I3
...

I3 03×1 03×1 · · · 2nNπ x1I3 y1I3 z1I3
...

I3 03×1 03×1 · · · 2nNπ xNp I3 yNp I3 zNp I3



,

(43)

Z =
[

t⊤ d1 d2 · · · dNπ r⊤1 r⊤2 r⊤3
]⊤
, (44)

B =
[

B1 B2 · · · BNπ

]⊤
, (45)

B j =
[

b1
j b2

j · · · bNp

j

]
, (46)

bi
j = (−2n⊤j pi

jnj + pi
j)
⊤. (47)

The vectors r1, r2 and r3 denote the first, second and third col-
umn of the rotation matrix R. From Nπ mirror poses and Np refer-
ence points, we have 12+Nπ unknown parameters and 3×Nπ×Np

equations. Hence, when Nπ ≥ 3 and 3×Nπ×Np > 12+Nπ, we can
solve the Eq (42) by Z = A∗B, where A∗ is the pseudo-inverse
matrix of A.

In case of that reference points are on a single plane, the 3D
position of reference points in its local coordinate system can be
expressed as pi{W} = (xi, yi, 0)⊤ and we cannot compute the third
column vector r3 of the rotation matrix. In this case, we compute
r3 as the cross product of first and second column vector r1, r2,
that is r3 = r1 × r2.
4.3.4 Linear Refinement of Rotation Matrix by Solving the

Orthogonal Procrustes Problem
Now we obtain columns of rotation matrix r1, r2, r3 and trans-

lation vector t linearly, but r1, r2 and r3 do not necessarily satisfy
the following constraints as a rotation matrix due to noise:

| r1 |=| r2 |=| r3 |= 1,

r⊤1 r2 = r⊤2 r3 = r⊤3 r1 = 0.
(48)

Here, we solve the orthogonal Procrustes problem [8] and obtain
a rotation matrix which satisfies Eq (48) and is closest to the orig-
inal linear solution as proposed in Zhang’s method [31]. That is
R = UV⊤, where U and V are given by as the SVD of the original
matrix (r1 r2 r3) = UΣV⊤.

4.4 Non-Linear Refinement of Extrinsic Parameters
In general, obtained extrinsic parameters can be refined by non-

linear optimization [28]. Here, we minimize following reprojec-
tion error function,

Eopt = Σ
Nπ
j=1Σ

Np

i=1|q
i
j − q̆i

j(R, t, nj, d j)|, (49)

where q̆i
j(R, t, nj, d j) denote the reprojected point calculated from

estimated parameters. We solved this non-linear optimization
problem of Eq (49) with Levenberg-Marquardt algorithm.
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Fig. 19 Estimation error of each parameter in changing the standard deviation σ of pixel noise added to
the input.
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Fig. 20 Estimation error of each parameter in changing the number of reference points Np.

4.5 Performance Evaluations
This section provides experimental evaluations using synthe-

sized and real data in Np > 3 case. In these evaluations, we
compare our method with state-of-the-arts proposed by Sturm et
al. [24] and by Rodrigues et al. [23] with non-linear refinement.
4.5.1 Quantitative Evaluations with Synthesized Data

Experiment Environment: To synthesize data, we used the
following experiment setup by default. The matrix of intrinsic
parameters, K, consists of ( f x, f y, cx, cy); f x and f y represents
the focal length in pixels, and cx and cy represent the 2D coordi-
nates of the principle point. We set them to (500, 500, 300, 250)
in this evaluation respectively.

The normal vectors nj( j = 1, · · · ,Nπ) of mirror poses
π j are set to (sin θz sin θx + cos θx cos θz sin θy, sin θx cos θz +
cos θx sin θz sin θy, cos θx cos θy) where θk(k = x, y, z) is the an-
gle respect to each axis, and drawn randomly within the ranges of
(−20 ≤ θx ≤ 20, 160 ≤ θy ≤ 200,−20 ≤ θz ≤ 20). The distance
between each mirror plane and camera center was set to 300 mm.

The reference object consists of Np reference points forming
a grid pattern and the distance between each reference point is
50mm. The center of X is located at the centroid of these points.

We represent the ground truth of rotation matrix as a product of
three elemental rotation matrices, that is R = R1(θ1)R2(θ2)R3(θ3),
and we set random values to each angles θ1, θ2 and θ3 within
[−10 : 10] respectively. The position t is generated of each trial
by assigning a random value within [−5 : 5] to each x, y and z
element of t.

In this experiment, we evaluate the performance of each
method under various conditions of the following parameters.
(a) σ: the standard deviation of Gaussian pixel noise of zero-

mean.
(b) Np: the number of reference points.
(c) Nπ: the number of mirror poses.

Table 3 describes the min, max, increment step and default value
of the parameters. We computed the average of the estimation er-
rors of 100 trials for each of combinations. While changing these
parameters respectively, the other parameters are set to values in
Default column, that is the minimum setup for Sturm et al. [24]
and Rodrigues et al. [23].
4.5.2 Error metrics

Throughout this evaluation, we used the following metrics to
measure the performance of the calibration methods.

The estimation error of R is defined as the Riemannian dis-
tance [19]:

ER =
1

Nπ

Nπ∑
j=1

1
√

2
∥ Log(R⊤j Rg, j) ∥F (50)

LogR′ =

0 (θ = 0),
θ

2 sin θ (R
′ − R′⊤) (θ , 0),

(51)

where θ = cos−1( Tr(R′)−1
2 ).

The estimation error of t is defined as the root mean square
error:

Et =
1

Nπ

Nπ∑
j=1

√
| t j − tg, j |2 /3. (52)

The estimation error of n is defined as the angle against the
ground truth ng:

En =
1

Nπ

Nπ∑
j=1

arccos(n⊤j ng, j). (53)

The reprojection error is defined as follows:

EP =
1

Nπ × Np

Nπ∑
j=1

 Np∑
i=1

(q̆i
j − qi

j)

 , (54)
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Fig. 21 Estimation error of each parameter in changing the number of mirror poses Nπ.

Parameter Min Max Step Default
σ 0 2 0.1 1
Np 4 20 1 4
Nπ 3 20 1 3

Table 3 The range of changing parameters.

where qi
j is the observation and q̆i

j is the reprojected point calcu-
lated from estimated parameters.

Results: Figure 19 shows results for different standard devia-
tions σ of pixel noise added to the observations. The averages of
each estimation error of proposed method are smaller than those
of Sturm et al. [24] and Rodrigues et al. [23]. This fact indicates
that our method can estimate better initial values from same in-
puts, because of the larger number of constraints involved in the
estimation. Notice that there exist some trials in each of which
all the methods result in a same optimal value regardless of the
differences between initial values returned by their linear meth-
ods. Besides, there exists some trials where all the methods fall
in local minima. This is the reason for the spikes.

Figure 20 shows results for difference number of reference
points. We added the results of Hesch et al. [12] designed for
Np = 3 case as a reference. From these results, we can observe
that the number of reference points affects the performance of
each method drastically. These improvements are thought to be
due to the improvement of estimation of mirrored reference point
by PnP. In fact, Lepetit et al. [17] shows that the result of PnP in
increasing number of points follows similar pattern of this exper-
iments in their paper.

Figure 21 shows results in changing the number of mirror poses
Nπ. While Sturm’s method [24] does not improve with increas-
ing number of mirror pose, we can see that our method and Ro-
drigues’s method [23] improves. This is considered to be due to
the scalability of formulation for mirror pose, that is the number
of equations for estimating extrinsic parameters by our method
and [23] changes depends on the number of mirror poses.

These results prove that proposed method works robustly with
observation noise and has the scalability for the number of refer-
ence points and mirror poses.
4.5.3 Qualitative Evaluations with Real Data

Experiment Environment: We evaluated the performance of
our proposed method with real data assuming calibration of a
display-camera system, such as digital-signage, laptop computer
and so on. We utilized the same configuration introduced in ??
(Figure ??). We used two cameras (Pointgrey Flea3) C1 and C2,
a 20-inch flat panel display and a sputtering mirror. The goal
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Fig. 22 Estimated positions of the reference object by the proposed method
(red), by [23](blue and cyan), by [24](green) and by Eq (??) (black).
Notice that this figure renders estimate positions of p and X1 in {C},
and therefore C1 is located at (0, 0, 0)⊤.

of this experiment is to calibrate the extrinsic parameters of C1

against a 7 × 10 chess pattern X1 rendered in the display. Notice
that we used only Np reference points for calibration. The length
between each reference point is 82.5 mm. C1 is located where
it cannot observe X1 directly. It captures Nπ UXGA images of
different mirror poses π j( j = 1, · · · ,Nπ) for calibration.

Results: Figure 22 renders the estimated positions of the ref-
erence object by each method with Np = 4 and Nπ = 3 con-
figuration. We can see that the reference objects estimated by
each method are located near the baseline result. This precision
is acceptable for applications using display-camera system such
as gaze detection for dibgital-signage or gaze correction [16] in a
video conference scenario.

Figure 23 and 24 shows results in changing the number of ref-
erence points Np and the number of mirror poses Nπ respectively.
Notice that the estimated parameters by each method are almost
identical, and therefore we observe only one line in Figure 24.

From these results, we can observe that our method performs
better than conventional methods [12, 23, 24] in real situation
qualitatively and quantitatively.

4.6 Discussion
4.6.1 Degenerate Case

Our algorithm does not work if it cannot compute enough axis
vectors mj j′ for estimating mirror normals. This happens in the
following three cases. (1) If two mirrors are parallel, then the in-

c⃝ 2013 Information Processing Society of Japan 13



IPSJ SIG Technical Report

0.6	



2           4           6           8          10	


1	



0	



0.8	



0.4	



0.2	



2 4 6 8 1
0

0

0

0

0

1

2 4 6 8 1
0

2

4

6

8

1

2 4 6 8 1
0

0

0

0

0

E R
	


E T
	


E P
	


Sturm et al	
 Rodrigues et al method 1	
 Proposed	
Rodrigues et al method 2	


Number of reference points Np	


Hesch et al	


(Np = 3, for reference)	


Hesch et al	


(Np = 3, for reference)	


Hesch et al	


(Np = 3, for reference)	


Number of reference points Np	
 Number of reference points Np	

2           4           6           8          10	


0.2	



0.1	



0	



60	



2           4           6           8          10	


100	



0	



80	



40	



20	



Fig. 23 Estimation error of each parameter with real data in changing the number of reference points Np.
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Fig. 24 Estimation error of each parameter with real data in changing the number of mirror poses Nπ.
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Fig. 25 Degenerate case

tersection of them does not exist and therefore not be computable.
(2) If all the mirror planes intersect at single axis in 3D, the mirror
normals cannot be computable by solving Eq (41). These (1) and
(2) cases has been originally observed by Sturm et al. [24]. (3)
If reference points and the intersection of two mirrors π j and π j′

are on a same plane, the axis vector mj j′ is not be computable by
solving Eq (39) though mj j′ does exist physically because of the
following reason which makes the two rows of M′j j′ correspond-
ing to π j and π j′ be linearly dependent.
Proposition 1. If two reference points pi and pi′ and the inter-
section of two mirrors π j and π j′ are on a same plane, the two
lines connecting results of different Householder transformations
of pi and pi′ , i.e. , the lines connecting pi

j to pi
j′ and pi′

j to pi′
j′ , are

parallel (Figure 25).

Proof. Suppose the line connecting pi and pi′ intersects with the
intersection of the two mirrors at O as shown in Figure 25. By
definition of the reflection, the distance from pi to O is equal to
the one from pi

j to O. Similarly, the distance from pi′ to O is equal
to the one from pi′

j to O. Also, these distances are equal to the
ones from pi

j′ to O, and from pi′
j′ to O respectively. Here △Opi

j p
i
j′

and △Opi′
j pi′

j′ are isosceles triangles sharing the apex ∠pi
jOpi

j′ .
Therefore, the two lines pi

j to pi
j′ and pi′

j to pi′
j′ are parallel. □

These three degenerate cases can be detected by observing the

rank of M j j′ in Eq (39). If the rank is less than 2, we can discard
the mirror pair and try with more mirrored images in practice.
4.6.2 Sufficiency of the Orthogonality Constraint

The orthogonality constraint holds for two reflections of a sin-
gle reference point and the axis vector, as a necessary condition.
Obviously, this does not constrain the position of the mirror (the
parameter d of Eq (37)). That is a mirror of another distance sat-
isfies Eq (38) as long as it has the same intersection direction.

This fact indicates that the orthogonality constraint itself does
not serve as the sufficient condition to determine all of the mirror
parameters. Instead, given three mirrors, it becomes the sufficient
condition to obtain the mirror normals uniquely as described in
Sections 4.3. By using the ted normals, we can define the linear
equations (Eq (42)) based on the measurement model (Eq (37)).

4.7 Summary
In this section, we proposed a new algorithm to extrinsically

calibrate a camera to a 3D reference object that is not directly vis-
ible from the camera. We introduced an orthogonality constraint
which should be satisfied by all families of reflections of a same
reference object and established a mirrored-points-based formu-
lation. This formulation allow us to obtain a larger number of
constraints which contribute to make the calibration more robust
even with a simple configuration, that is using fewer reference
points and fewer mirror poses. The evaluations of the extrinsic
calibration by synthesized and real data showed our improvement
on the accuracy and robustness against state-of-the-arts quantita-
tively and qualitatively.

The proposed method utilized a single reflection of a reference
object. However, in case of calibrating widely scattered cameras
or an omnidirectional cameras, the reference object cannot be ob-
servable via single reflection. For such cases, the multiple reflec-
tions should be considered and the extrinsic camera calibration
with them is the future work.
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5. Extrinsic Camera Calibration using Human
Cornea Reflections

This section provides a human cornea reflection based extrinsic
calibration algorithm of a camera and a reference object located
out of the camera’s filed-of-view.

5.1 Measurement Model
As illustrated in Figure 26, we denote a center of the spherical

mirror, its radius, and a reflection point of a reference point pi

on the cornea sphere by S, r and mi respectively. Let us assume
a unit vector from mi to pi expressed as ui, pi is expressed as
pi = kiui + mi, where ki is the distance between mi and pi. This
pi also satisfies pi = Rp{X}i + t, where R and t are the extrinsic
paraemters between the camera and the refefence object. From
these equations, we obtain the following equation:

Rp{X}i + t = kiui + mi. (55)

This Eq.(55) has 10 unknown parameters, that is R, t, S and r,
and it is defined as the measurement model in this configuration.

5.2 Approach: Solving Absolute Orientation Problem
Determining extrinsic parameters between two coordinate sys-

tems, such as {C} and {X}, through the use of a set of correspond-
ing points in each coordinate system is known as the Absolute
Orientation Problem. By solving this problem, we can obtain the
extrinsic parameters from at least three point correspondences.
Since the 3D positions of reference points p{X}i in {X} are sup-
posed to be given a priori, we estimate the 3D positions of ref-
erence point pi in {C} by estimating kmi pi , S and r. In order to
estimate them, we introduce the following two constraints, a geo-
metric model of the cornea sphere and the equidistance constraint.
5.2.1 Cornea Sphere Parameters Estimation Based on its

Geometric Model
Based on the geometric model [20], the radius of the cornea

is recognize as the average of it based on [22], and the limbus
projection is modeled as an ellipse represented by five param-
eters: the center, iL, the major and minor radii, rmax and rmin,
respectively, and rotation angle ϕ. Since the depth of a tilted lim-
bus is much smaller than the distance between camera and the
cornea sphere, we assume weakly perspective projection. Under
this assumption, the 3D position of the center of limbus L is ex-
pressed as L = dK−1iL, where d denotes the distance between
the center of camera, O, and the center of limbus L, and is ex-
pressed as d = f · rL/rmax. f and K represent the focal length in
pixels and intrinsic parameters, respectively. Gaze direction g is
approximated by the optical axis of the eye, and is theoretically
determined by g = [sin τ sin ϕ,− sin τ cos ϕ,− cos τ]⊤, where τ =
± arccos(rmin/rmax); τ corresponds to the tilt of the limbus plane
with respect to the image plane. Since the center of cornea sphere,

S, is located at distance dLS (=
√

r2 − r2
L =
√

7.72 − 5.62 ≈ 5.3
mm), the radius of the cornea sphere from L, we compute S as
S = L − dLS g. In this way, we estimate S from the ellipse param-
eters of the limbus projected onto the image plane.
5.2.2 Equidistance Constraint

To obtain ki, we introduce the Equidistance Constraint. The
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Fig. 26 Reflection model of spherical mirror.
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of reference point computed from estimated extrinsic parameters.

Equidistance Constraint states that the distance from reference
point pi to the center of cornea sphere S is equal to the distance
from the center of the camera, O, to S. If this equidistance con-
straint is satisfied, when user sets his/her center of cornea sphere
such that the equidistance constraint does hold, triangle △Omi pi

should be an isosceles triangle that satisfies |pi − mi| = |O − mi|,
that is ki = k′i and this k′i is a known parameter.

By introducing above constraints, we compute 3D positions
of reference point pi and obtain extrinsic parameters R and t by
solving the Absolute Orientation Problem. This algorithm works
with the minimal configuration where three reference points and
one mirror pose.

5.3 Performance Evaluations
Figure ?? (a) illustrates the geometric relation of camera and

reference points. The camera is set at the top of display which has
three reference points. Figure ?? (b) renders the estimated posi-
tions of the reference points. It is difficult to obtain the ground
truth of extrinsic parameters in any real configuration, so we used
the baseline method as the reference parameters. From this result,
we can see that the positions estimated by the proposed method
are almost identical to those of baseline. Notice that the differ-
ence in these rotation matrices for x-axis, y-axis and z-axis are
2.44, 6.88, and 0.49 degrees, respectively (ER = 0.1278), and Et

is 27.4989 mm in Figure ??.

6. Summary
In this chapter, we proposed a new algorithm that calibrates a

camera to a 3D reference object via cornea reflection with mini-
mal configuration. The key features of our method are its intro-
duction of two constraints: cornea reflection model and equidis-
tance constraint. In evaluations, our method outperformed a state-
of-the-art of plane mirror based method with both synthesized
and real data.

The proposed method introduced in this chapter mainly fo-
cuses on the geometric relationship between the 3D reference
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point and its 2D projection. While the human eye reflects ray
and can be utilized as a spherical mirror, the human eye also re-
flects a cue of mental condition of humans, such as the gaze di-
rection [13]. These cues are sometimes available for analyzing
the relationship of each parts of a imaging system. The fusion
of reflections of a ray and a mental condition is one of the future
works.
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